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Abstract

The streaming instability (SI) is one of the most promising candidates for triggering planetesimal formation by
producing dense dust clumps that undergo gravitational collapse. Understanding how the SI operates in realistic
protoplanetary disks (PPDs) is therefore crucial to assess the efficiency of planetesimal formation. Modern models
of PPDs show that large-scale magnetic torques or winds can drive laminar gas accretion near the disk midplane. In
a previous study, we identified a new linear dust-gas instability, the azimuthal drift ST (AdSI), applicable to such
accreting disks and is powered by the relative azimuthal motion between dust and gas that results from the gas
being torqued. In this work, we present the first nonlinear simulations of the AdSI. We show that it can destabilize
an accreting, dusty disk even in the absence of a global radial pressure gradient, which is unlike the classic SI. We
find the AdSI drives turbulence and the formation of vertically extended dust filaments that undergo merging. In
dust-rich disks, merged AdSI filaments reach maximum dust-to-gas ratios exceeding 100. Moreover, we find that
even in dust-poor disks the AdSI can increase local dust densities by 2 orders of magnitude. We discuss the
possible role of the AdSI in planetesimal formation, especially in regions of an accreting PPD with vanishing radial

pressure gradients.

Unified Astronomy Thesaurus concepts: Astrophysical fluid dynamics (101); Planet formation (1241);
Hydrodynamics (1963); Protoplanetary disks (1300); Hydrodynamical simulations (767)

1. Introduction

A key step in the core accretion scenario of planet formation
is the formation of 1-100 km or larger-sized planetesimals
(Chiang & Youdin 2010; Johansen & Lambrechts 2017;
Drazkowska et al. 2022; Raymond & Morbidelli 2022).
Planetesimal formation is often attributed to the self-gravita-
tional collapse of dust grains or pebbles. A necessary condition
for this to occur is for solids to be concentrated to a sufficiently
high volume density relative to the ambient gas in proto-
planetary disks (PPDs) (Goldreich & Ward 1973; Youdin &
Shu 2002; Shi & Chiang 2013; Gerbig et al. 2020). To this end,
several dust concentration mechanisms can operate in PPDs,
e.g., vertical settling, zonal flows or pressure bumps, vortices,
etc. (Johansen et al. 2014; Pinilla & Youdin 2017), and the
streaming instability (SI, Youdin & Goodman 2005; Youdin &
Johansen 2007; Johansen & Youdin 2007).

Among these, the SI has perhaps garnered the most attention
(e.g., Bai & Stone 2010a; Yang & Johansen 2014; Carrera et al.
2015; Yang et al. 2017; Flock & Mignone 2021; Li &
Youdin 2021, see also the recent review by Lesur et al. (2022)).
When the dust surface density divided by the gas surface
density exceeds a critical value, the SI can produce dust clumps
that subsequently undergo gravitational collapse into planete-
simals (Johansen et al. 2009, 2011; Simon et al. 2017; Schéfer
et al. 2017; Li et al. 2019). However, the SI itself does not
require self-gravity.
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The SI is powered by the relative motion between dust and
gas in PPDs. Usually, this arises from the fact that the gas
rotation is slightly sub-Keplerian due to a (negative) radial
pressure gradient, but solids tend to rotate at the full Keplerian
speed. The resulting headwind on the solids causes it to lose
angular momentum to the gas and drift inward (Whipple 1972;
Weidenschilling 1977), while the gas drifts outward. This
relative dust-gas drift provides the free energy for instability.
However, the precise mechanism for the SI is rather subtle and
a variety of interpretations have been developed. These include
dust trapping by pressure maxima, pressure-density phase
lags, or resonances between waves in the gas and dust-gas
drift (Jacquet et al. 2011; Lin & Youdin 2017; Squire &
Hopkins 2018, 2020; Pan 2020).

Recent extensions of the SI have begun to incorporate
additional effects to better understand how it operates under
more general disk conditions, e.g., turbulence (Gole et al. 2020;
Schifer et al. 2020), vertical disk stratification (Lin 2021), or
radial disk structures (Carrera et al. 2021, 2022). It is worth
noting that observations of PPDs indeed show that dust rings
appear commonplace, which likely reflect a nonmonotonic
radial gas distribution (Dullemond et al. 2018; Andrews 2020).

At the same time, the latest theoretical models of PPDs show
that their overall gas dynamics are controlled by large-scale
magnetic winds and torques (see reviews by Lesur (2020);
Pascucci et al. (2022), and references therein). Of particular
relevance here are models that exhibit nonturbulent gas
accretion around the disk midplane (e.g., Bai 2017; Béthune
et al. 2017; Wang et al. 2019; Gressel et al. 2020; Cui &
Bai 2021), where pebbles are expected to settle and form
planetesimals. A natural question is then how does the SI
operate in such accreting disks?

Furthermore, modern simulations often show that PPDs can
spontaneously develop axisymmetric pressure bumps (Béthune
et al. 2016; Suriano et al. 2018; Hu et al. 2019), which
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efficiently trap dust (Krapp et al. 2018; Riols et al. 2020). In
addition to possibly explaining substructures in observed disks,
the resulting dust rings may be also be preferential sites for the
SI, as it grows on dynamical timescales when the local dust-to-
gas ratio is greater than of order unity (Chen & Lin 2020),
which can be expected in a dust-trapping pressure bump.
However, a complication is that as one approaches a pressure
maximum, the SI’s characteristic length scale becomes
arbitrarily small. At the exact bump center, the instability
ceases altogether because there is no radial pressure gradient
and hence no radial drift between dust and gas.

Motivated by the above considerations, in a previous study
we generalized the linear theory of the SI to account for a
background gas accretion flow and considered a range of radial
pressure gradients, including zero (Lin & Hsu 2022,
hereafter LH22). We discovered a new form of the SI powered
by the azimuthal velocity difference between dust and gas,
which is ultimately driven by the (magnetic) torque that
mediates gas accretion. This “azimuthal drift” SI (AdSI)
operates even in the absence of a radial pressure gradient,
suggesting it could be relevant in regions near a pressure bump.

In this work, we present numerical simulations of the AdSI.
Our main goal is to confirm its existence and to compare its
nonlinear evolution with the classical SI of Youdin &
Goodman. We find the AdSI can indeed develop and drive
turbulence without a background radial pressure gradient. In
strongly accreting disks, it can produce dust-to-gas ratios for
which gravitational collapse is expected. Moreover, the AdSI
can lead to appreciable dust concentrations, even when the
initial dust-to-gas ratio is below unity, which is unlike the
classic SI.

This paper is organized as follows. In Section 2 we describe
our local disk model and basic equations. Our numerical
methodology, including simulation diagnostics, are detailed in
Section 3. We present simulation results in Section 4, including
analyses of turbulence, dust drift, and dust concentrations. We
discuss our findings in the context of planetesimal formation in
Section 5 and summarize in Section 6.

2. Disk Model

We consider a PPD of gas and dust orbiting a star of mass
M, Cylindrical coordinates (R, ¢, z) are centered on the star.
We assume an isothermal gas with a constant sound speed
Cy=H,{l, where H, is the pressure scale height,
Qx(R) = \GM,/R? is the Keplerian frequency, and G is the
gravitational constant.

The disk is threaded by a magnetic field that is assumed to
remain passive, i.e., it does not respond to the gas dynamics,
which might be expected for weakly ionized gas in PPDs
(Lesur 2020). The magnetic field, however, drives gas
accretion onto the star through horizontal Maxwell stresses or
by extracting angular momentum vertically (Bai 2016;
Lesur 2021; Tabone et al. 2022). We realize this accretion
flow in a hydrodynamic model by applying an external torque
onto the gas. See McNally et al. (2017) for a similar approach
for simulating planets interacting with accreting disks.

We include a single species of uncharged dust grains with a
stopping time 7 that characterizes the frictional drag with the
gas. We consider small grains with Stokes numbers
St=7k < 1, which are tightly—though not necessarily
perfectly—coupled to the gas. In this limit, one can treat the
dust population as a pressureless fluid (Jacquet et al. 2011).
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2.1. Governing Equations

We focus on a small patch of the disk around a fiducial
point (Rg, ¢, 0) with ¢o(f) = Qot, where Q¢ = Qk(Rp), and ¢ is
the time, and adopt the shearing box framework (Goldreich &
Lynden-Bell 1965) with Cartesian coordinates (x, y, 2)
corresponding to the radial, azimuthal, and vertical directions
in the global disk. For a small box and length scales of interest
<Ry, we can ignore curvature effects and approximate
Keplerian rotation as the linear shear flow Ux = —ixQOf).
We consider dynamics close to disk midplane and neglect
the vertical component of stellar gravity. We assume
axisymmetry throughout so that d,=0. The total gravita-
tional and centrifugal force in the box is 3xQ(2)£. For clarity,
we henceforth drop the subscript zero that denotes the
evaluation of global quantities at the reference radius, which
includes H,.

The axisymmetric, unstratified shearing box equations for
our dusty-gas disk are

Op,
— 4+ V-(pv) =0, 1
- () (1)
» +v-Vr=2y08 — vxgyA - LVP
ot ’ 2 Pa
+ 21 RO’% + F3§
tE wowntLiv.T, )
% Py
0
% +V - (pw) = V - (Dp,Ve), 3)
Mo Iw=—2m % -wmy —Lw—n @
or 2 Ts

(LH22), where pg, pq are the (midplane) gas and dust densities,
and v, w are their velocities relative to the Keplerian shear flow,
respectively. We also define € = py/p, as the dust-to-gas ratio.
We assume 7, or equivalently St, is constant in the box. Note
that here P = Cs2 P, 1s the local pressure fluctuation and is zero
in equilibrium.

In the gas momentum Equation (2), we model two effects
from the global disk as body forces in the local box. The
term o< 7, represents the combined global gas and magnetic
pressure radial gradients. In the usual case of weak fields and a
negative gas pressure gradient, this leads to a sub-Keplerian
gas flow. Such a constant radial forcing is commonly used to
model the SI in the local approximation (e.g., Johansen &
Youdin 2007).

The forcing F, < 0 represents the azimuthal Lorentz force
from the global magnetic field, which exerts a torque on the gas
and drives accretion. Note that because we assume the
magnetic field is passive, no induction equation is needed.

In the local approach, 7, and F are taken to be constant and
independent input parameters. However, in a resistive disk
threaded by a spiral magnetic field, these are related to the
global disk profiles as

Ir
=+ —, 5
Mot = 1 RO )]
BB,
Fy=—2 (6)
znu“ORpg
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is the dimensionless radial gas pressure gradient, and FF is the

radial component of the Lorentz force,
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In the above expressions, Pg, is the global pressure
distribution, By, are the radial and azimuthal components of
the magnetic field (see LH22 for explicit expressions),
respectively, and p is the magnetic permeability. Note that
BgrB; < 0.

For completeness, we also include a viscous stress tensor T
in the gas momentum Equation (2), which is given by

T = pgl/(Vv + Wt — %IV . v), 9)

with a constant kinematic viscosity v. We use gas viscosity as a
proxy for any underlying turbulence. Particle stirring by said
turbulence is then modeled as the diffusion term o< D in the
dust mass Equation (3). However, for the most part, we neglect
viscosity and diffusion except in code tests and Section 4.6.
When considered, we set D = v = s CiH,, Where ouigc 18 @
constant parameter.

2.2. Physical Parameters

This subsection describes all of the physical parameters that
characterize our models. The disk aspect ratio is

hy = —%, (10)

and we take h, =0.05 in all computations. We also define a
reduced pressure gradient parameter

7= ot (11)
hy
Typically 7 is of O(hg) in PPDs, but we will vary 7 to explore

how the SI behaves with vanishing pressure gradients, 77 — 0.
We also define the dimensionless azimuthal forcing

2RE,

=R (12

Ay — —
which can be related to horizontal Maxwell stresses if the
torque results from a spiral magnetic field in a resistive disk
(e.g., LH22). While we are motivated by accretion mediated by
large-scale magnetic fields, our results are also applicable to
accretion driven by other means, as long as it can be
represented by an F, in the gas’ azimuthal equation of motion.
Nevertheless, we will refer to «y, as the Maxwell stress for
convenience.

Each of our disk models is characterized by St, 7, o, and
the initial value of e. However, to limit the volume of parameter
space for computational feasibility, we fix St =0.1 throughout
this paper. This corresponds to centimeter-sized grains with

internal density 1 g cm > at 20 au in a minimum-mass solar
nebula-like disk (Chiang & Youdin 2010).
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2.3. Equilibrium State

We consider steady-state solutions of Equations (1)-(4) with
constant pq, p, and velocity deviations given by:

Vé _ 22§t7~7 B ath(StZ;L e+ 1)’ (13)
Vé _ (St2 +A26+ 1)7~7 3 aMZhZESt’ (14)
ij _ —%ﬁ B athifz—i- l), (15)
Vé_::_(ezz])ﬁ+ a,;ILgZSt’ (16)

where A?=St> + (1 + ¢)>. The first and second terms on the
RHS correspond to drift induced by the large-scale pressure
gradient and magnetic torque, respectively. Note that pressure
gradients dominate the radial drift between dust and gas; while
the magnetic torque dominates their azimuthal drift (LH22).
Note that viscosity and diffusion do not affect these equilibrium
solutions. See Carrera et al. (2022) for a generalization that
includes a full pressure bump in the box.

3. Numerical Method

We adapt FARGO3D (Benitez-Llambay & Masset 2016) with
its multifluid extension (Benitez-Llambay et al. 2019) to evolve
the dusty shearing box Equations (1)-(4). FARGO3D is a
versatile finite-difference code but is particularly suited for disk
problems.

We made two augmentations to the shearing box module
in the public version of FARGO3D. First, as the original
code solves the full velocity field (e.g., v + Uxg), we subtract
the background shear flow from the outset by removing the
centrifugal source term (3Q°x) that would appear in the
equations for the full x-velocities. We also treat the second term
on the right-hand side of the y-momentum Equations (2) and
(4)) explicitly in the source step, as opposed to absorbing it in
the transport step as done for the y-Coriolis force in the original
code. Our approach is similar to that done in the ATHENA code
(Stone & Gardiner 2010). Second, we added a constant
azimuthal forcing F in the gas v, equation.

For consistency with the dust diffusion term adopted in
Equation (3), which the linear theory developed in LH22 is
based upon, we also modified FARGO3D’s dust diffusion
module such that the diffusive mass flux is proportional to
V(ps/py), rather than Vip,;/(py + p,)] as in the standard
release.

We enable the “FARGO” algorithm (Masset 2000a, 2000b),
originally designed to speed up the simulations by decompos-
ing the total flow velocity into the average orbital motion and
residuals during the advection step. However, as we remove the
background Keplerian flow from the outset, this choice makes
little difference.

In the Appendix, we test the revised code against the linear
theory of the AdSI as described in LH22.

3.1. Simulation Setup

Our simulations are three-dimensional but axisymmetric,
or “2.5D”. In practice, this is realized by setting the azimuthal
(y) grid to one cell wide. The meridional domain is
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Table 1
Parameters for Our Main Simulations
Name 7 Qpy End state
€e=3,N,= 226
E3eta005am0 0.05 0 Clumping
E3eta005am001 0.05 0.01 Clumping
E3eta005am01 0.05 0.1 Clumping
E3eta0005am0 0.005 0 Turbulent
E3eta0005am001 0.005 0.01 Clumping
E3eta0005amO01 0.005 0.1 Clumping
E3eta0am0 0 0 Stable
E3eta0am001 0 0.01 Turbulent
E3eta0am01 0 0.1 Clumping
e=02,N,=2%

E02eta005am0 0.05 0 Unsaturated
E02eta005am001 0.05 0.01 Unsaturated
E02eta005am01 0.05 0.1 Unsaturated
E02eta0005am0 0.005 0 Unsaturated
E02eta0005am001 0.005 0.01 Unsaturated
E02eta0005am01 0.005 0.1 Turbulent
E02eta0am0 0 0 Stable
E02eta0am001 0 0.01 Turbulent
E02eta0amO1. 0 0.1 Turbulent

(x, 2y €[—Ly./2, L,/2] with L,=0.2H, and L,=0.05H,.
The small vertical domain is chosen for consistency with our
unstratified approximation that focuses on the disk midplane.
We use N, = 2048 and N, = 512 cells in the radial and vertical
directions, respectively, which gives a resolution of about
10~*H,. This resolution was chosen as a compromise between
capturing as wide of a range of AdSI modes as possible, as it
can develop on arbitrarily small scales in inviscid disks
(LH22), and the computational cost. The same applies to the
classic SI: as 7j — O its characteristic length scale (in units of
H,) vanishes.

We apply strictly periodic boundary conditions to both radial
and vertical directions and run most simulations to t=50P,
where P =27 /() is orbit period. We use a Courant—Friedrichs—
Lewy (CFL) number of 0.15. Finally, we adopt units such that
Cy=H,==1. For non-self-gravitating disks, the density
scale is arbitrary, we thus define the equilibrium gas density
po =1 for convenience.

3.2. Main Runs

Table 1 lists our main simulations. We investigate two
classes of disks: dust-rich (e = 3) and dust-poor (¢ =0.2). We
consider 7 € [0, 0.005, 0.05] to mimic regions at a pressure
bump, weak pressure gradients, and typical pressure gradi-
ents, respectively; and a,, € [0, 0.01, 0.1] to represent
varying degrees of underlying gas accretion. Runs are labeled
by the above parameters, e.g., E3eta005am0 corresponds
to (e, 7, ayy) = (3, 0.05, 0).

In Table 1, we also describe the end state of each run as:
“stable” if no instability develops; “unsaturated” if the
instability grows but does not saturate within the simulation
timescale; “turbulent” if the system saturates but does not
produce strong clumping; and “clumping” if the system is
turbulent and produces strong clumping. The clumping
condition is defined in Section 3.4.2.
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3.3. Initial Conditions and Perturbations

The disk is initialized with the equilibrium solutions
described in Section 2.3. To trigger instability, we perturb the
initial dust density field by adding “particles” to the disk as
follows. We randomly select N, points in the domain and
assign + 10~*p, to each point, again at random. For each grid
cell that contains 7, points or particles, the cell’s dust density
perturbation is then 1074Npp0. The total dust density perturba-
tion over the domain is close to zero.

3.4. Diagnostics

In this subsection, we describe the methods adopted for
analyzing the turbulence properties and assessing dust clump-
ing in our simulations.

3.4.1. Transport and Turbulence
We follow Johansen & Youdin (2007) and define

a7

as a dimensionless radial angular momentum flux carried by the
gas. The numerator and denominator of agg are the Reynolds
stress and (equilibrium) thermal pressure, respectively. This
quantity is similar to the Shakura—Sunyaev stress parameter
(Shakura & Sunyaev 1973) used by Yang et al. (2018) and Xu
& Bai (2022) in their particle-gas simulations. Note that agg
includes a laminar contribution from the equilibrium gas
velocity field (Equations (13)-(14)).

Using () to denote averaging over the x — z plane, we first
calculate (ass), then further conduct a time average as

<OéSS> =

! ft * ass)dt. (18)

h — 4

Based on the time at which our simulations reach saturation, we
use t; =40P and #, =50P. For this interval, we output the
simulation data every 0.01P and perform the time integration
explicitly.

The next quantity of interest is the bulk gas diffusion
coefficient D,; in the ith direction (Yang et al. 2018). We
define its dimensionless equivalent as

D, Y
Qg = ot () (19)
CH, C;
where
dvi = () — (v)?, (20)

is the dispersion in the ith velocity component with its time
average 0v; defined in a similar manner to Equation (18); and

Tc,i = th,i: (2])

is a dimensionless measure of the correlation time f, ;.
We measure f.; by plotting the autocorrelation function of
the ith velocity component,

4+5P
RO= [ ) - WG + 0 - wdr, @22

i}
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where

1 2}

7= f V(') dr! (23)
I —h v

is the mean gas velocity, and define 7.; as half-life of R, We

calculate R,(¢) for each cell and use (R;(f)) to obtain an averaged

autocorrelation function. An example of this procedure is given

in Section 4.3.

We also examine the gas’ turbulent spectra by first
comguting the vertically averaged kinetic energy density
(pev™)z» which is a function of x and time. We then take its
Fourier transform in x, which gives the amplitude of modes
with radial wavenumber k.. We scale the wavenumber by H,
and thus plot the Fourier modes <pg\/2>Z as a function of
K, =k:H,. Note that here and below (-), denotes a vertical
average.

3.4.2. Clumping Condition

One of the main goals of this paper is to assess whether or
not a given system will lead to planetesimal formation. As we
do not include self-gravity, we follow other authors (e.g., Li &
Youdin 2021; Xu & Bai 2022) and measure the maximum dust
density py ., and compare it to the Roche density,

_ 9022
T 4nG’

PR (24
A dust clump with p, .. > pr can be expected to undergo
gravitational collapse (but see Shi & Chiang 2013, for a more
stringent criterion in the case of perfectly coupled dust),
provided it can overcome internal dust diffusion (Klahr &
Schreiber 2020). In this work, for simplicity, we only consider
the Roche density criterion, which should be taken as a
necessary but not sufficient condition. Note that simulating
gravitational collapse requires modeling the dust as Lagrangian
particles, rather than the fluid approach taken here.

One can calculate pg/p, for a given disk model with Toomre
parameter Q = C,Q)/7GY,, where the gas surface density
Xy = 2r Py Which gives pr~5.60Qp,. For example, Li &
Youdin (2021) consider a low-mass disk with Q =32 and
define pgr >~ 180p,; while Xu & Bai (2022) consider a
minimum-mass solar nebula disk with pgr ~ 130p, at 30 au and
pr~300p, at 1 au. For convenience, we define strong
clumping as

pd,max
Po

> 100 (strong clumping), (25)

which would lead to gravitational collapse for Q < 18.

4. Results

Figures 1 and 2 give a visual overview of the simulations
listed in Table 1 for different Maxwell stresses, o, and global
radial pressure gradients, 7. We categorize our results based on
the state at the end of the simulation. Clumping cases, denoted
by “C”, are those that saturate into a turbulent state with a
maximum dust density exceeding the Roche density, i.e.,
Equation (25) is met. Cases with “T” reach a turbulent, quasi-
steady state but do not meet the clumping condition. Cases with
“U” are unsaturated as the instability remains in its linear
growth phase within the simulation timescale. Finally, cases
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marked with a cross (x) are completely stable as the instability
does not operate (namely, when oy, = 7 = 0).

Figure 3 shows the time evolution of the maximum dust
density perturbation, 6py ., = max (p; — €p,), for the above
simulations. The upper and (lower) panels show the e€=3
(e =0.2) cases. From left to right, the columns denote 7 = 0,
0.005, and 0.05. The green, blue, and red curves denote
oy =0,0.01, and 0.1, respectively. We also mark the clumping
condition (Equation (25)) with the horizontal dashed-
dotted line.

4.1. Dust-rich Disks

Starting with € =3 and 7] = 0.05, in all cases, gy ., grows
rapidly, with a growth rate s~ 0.64(), and saturate into a
turbulent state where the clumping condition is met. The case
with oy, =0 (no gas accretion) corresponds to the classic SI.
We find the inclusion of a sufficiently strong accretion flow,
here with ay,=0.1, can further boost p; .., by an order of
magnitude. This enhancement is negligible for a,, = 0.01.

Moving to weaker pressure gradients but still considering
€ =3, all cases become more stable as g ... is reduced. This is
consistent with linear theory as in dust-rich disks growth rates
drop with decreasing 7; (LH22). As the classic SI (green curves)
is powered by the radial pressure gradient, it is weakened with
decreasing 7 and no longer meets the clumping condition with
7 = 0.005, and is stabilized altogether for 7 = 0.

The above result seemingly contradicts the findings of Bai &
Stone (2010b) that clumping via the SI is easier for decreasing
(but nonzero) pressure gradients. However, a key difference is
that their simulations are stratified. In that case, the weaker
turbulence associated with a smaller pressure gradient allows
particles to settle to a denser midplane layer, which ultimately
promotes clumping. However, this settling effect is absent in
unstratified simulations, so we observe SI clumping for larger 7).

On the other hand, accreting disks (o, > 0) are unstable for
all 7. For a,, = 0.1, the clumping condition is satisfied even if
1 = 0, i.e., without a radial pressure gradient. For € = 3, cases
driven by the AdSI are insensitive to 7j, which differs from the
dust-poor disks discussed in Section 4.2.

Figures 4 and 5 show dust density snapshots for runs
E3eta005am0 (classical SI) and E3eta0amO1 (AdSI), respec-
tively, which display distinct evolution. The classic SI remains
approximately isotropic from growth to saturation. Note that
our small radial domains are not well-suited for capturing the
long-term evolution of classic SI filaments, which are typically
separated by 0.2H, (i.e., our box size) as found in large domain
simulations (Yang & Johansen 2014). This is further discussed
in Section 5.2.

By contrast, the AdSI shows anisotropy early on and is
sustained. We find the preferential growth of vertically
extended filaments, initially with small radial separations. This
is consistent with the linear theory developed by LH22 as the
AdSI is intrinsically one-dimensional with little dependence on
the vertical dimension. Such modes might then be expected to
dominate numerical simulations as they should be more robust
to grid dissipation than small-scale perturbations.

In conjunction with Figure 3 (red curve in the top-left panel),
we see that these vertical filaments grow by merging: at
t=15P the system reaches slowly growing state with
Pamax S 102p, and ~10 filaments; while by =30P as the

system shifts into a second saturated phase with py .. 2 102,
and we are left with 4 filaments.
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Figure 1. Outcome of our main simulation with € = 3 for different Maxwell
stresses, oy, and global radial pressure gradients, 7j. Turbulent cases that meet
the clumping criterion (Equation (25)) are symbolized by “C”. Cases that are
turbulent but do not meet the clumping condition are marked by “T”. The case
with 77 = ay; = 0 remains stable.
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Figure 2. Similar to Figure 1, but for runs with ¢ = 0.2.

4.2. Dust-poor Disks

Next, we examine dust-poor disks with € =0.2, which are
depicted in Figure 2 and the bottom row of Figure 3. (The dust
density contour plots for this case are qualitatively similar to
Figure 5.) None of these runs meet the clumping condition
within the simulation timescale. Furthermore, all of the classic
SI cases (v, =0) remain in the linear growth phase. Never-
theless, we find that with a;, > 0, i.e., an accretion flow, dust
can still be significantly concentrated if pressure gradients
are weak.

For 7 = 0.05, all runs remain unsaturated. Even in most
unstable disk with ay, = 0.1, € only increases by ~ 1%. Upon
lowering to 77 = 0.005, the ay, = 0.1 disk (red) saturate while
the a3, = 0.01 disk (blue) still remains unsaturated. For 7} = 0,
both accreting disks reach saturation with py .. /pg ~ O(1) —
0(10), which is 1-2 orders of magnitude larger than the initial
value.

The destabilization of the e = 0.2 disks with decreasing 7 is
in direct contrast with the ¢ =3 cases above, but is consistent

Hsu & Lin

with linear theory (LH22): in accreting, dust-poor disks, growth
rates indeed increase with decreasing 7 as the system
transitions from the classic SI to the AdSI, but the opposite
is true for dust-rich disks.

Our results demonstrate a qualitative difference between the
AdSI and the classic SI at low dust-to-gas ratios, namely the
AdSI can still drive dust concentrations by an order of
magnitude or more. On the other hand, the classic SI, for
example the “AA” run of Johansen & Youdin (2007), with
(e, St, ) = (0.2, 0.1, 0.05) only show about a 20% increase
in the maximum dust density perturbation, even after 300P in
their runs.

4.3. Turbulence Properties

In this section, we investigate the kinetic energy spectra,
angular momentum transport, and mass diffusion associated
with SI-driven turbulence. Here, we are particularly interested
in how the AdSI differs from the classical SI. To this end, we
focus on the “C” and “T” cases listed in Table 1 where the
system saturates into a turbulent state. Our diagnostics are
described in Section 3, and Table 2 lists our measured values
for the aforementioned runs.

4.3.1. Kinetic Energy Spectra

Figure 6 compares the gas kinetic energy spectrum for runs
E3eta005am0 (classic SI) and E3eta0amO1 (AdSI) on a
logarithmic scale at t =30P, when both systems are in quasi-
steady state (see Figure 3). The red dashed lines denote a slope
of — 5/3, i.e., the Kolmogorov law (Kolmogorov 1941). We
find the AdSI follows the Kolmogorov spectrum from
K.~ 10°-10* and is hence the inertial range; but the classic
SI only from K, ~ 10°~10*. Note that K, = 10* corresponds to
a wavelength of 6 x 1074Hg, which is resolved by about six
cells. Larger wavenumbers are thus not well-resolved, and the
associated dynamics cannot be properly captured. This explains
the deviation from the Kolmogorov spectrum at small scales.

The above spectra are consistent with the contour plots
shown in Figures 4 and 5. Namely, the former classic SI case
show small-scale turbulence, while the latter AdSI case shows
large-scale vertical filaments that dominate the system, as well
as small-scale eddies within them.

However, we caution that the above result for the classic SI
may be affected by the domain size. According to Yang &
Johansen (2014), classic SI filaments have radial separations of
order 0.2H, (our box size). Thus, increasing the domain is
expected to support larger scales, and possibly extend the
match with the Kolmogorov law to smaller K.

4.3.2. Angular Momentum Transport

We quantify the radial flux of gas orbital momentum with
ass, as described in Section 3.4, where a positive value
indicates outward transport. These are listed in the fifth and
sixth columns of Table 2, where we further decompose ag into
that associated with the initial equilibrium and deviations from
it (or the turbulent part). The equilibrium value is calculated
from Equation (17) using Equations (13) and (14); while the
perturbed part is obtained from Equation (18) and subtracting
the equilibrium part.

First, we point out that the equilibrium transport is negative
when dust-gas drift is dominated by the radial pressure gradient
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Figure 3. Time evolution of the maximum dust density perturbation for simulations listed in Table 1. The upper and lower panels correspond to € =3 and 0.2,
respectively. The left, middle, and right columns corresponds to 77 = 0 (no pressure gradient), 0.005, and 0.05, respectively. Within each panel we show vary the
applied torque or Maxwell stress oy, = 0 (green, no accretion flow), a,, = 0.01 (blue), and ;= 0.1 (red). The horizontal dashed—dotted line corresponds to the

clumping condition, Equation (25).
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Figure 4. Dust density snapshots of the classic SI (e = 3, 7} = 0.05, a,, = 0; run E3eta005am0). The top panel shows the linear growth phase, while the middle and

lower panels show the saturated state of the system.

(as noted by Johansen & Youdin (2007)); while for sufficiently
large oy, /7, the background transport becomes positive.

We find that in most cases if the equilibrium agg is negative,
the perturbed part is also negative, indicating inward transport
by the classic SI. However, a sufficiently strong accretion
flow can reverse the direction of angular momentum transport,
as observed for runs E3eta0005am001 and E3eta005amOl.
In these cases, the total transport is positive, although the

background is negative. For cases with a positive background
transport, i.e., when the azimuthal drift becomes dominant, the
perturbed transport is also positive. We conclude that the AdSI
drives outward angular momentum transport in the gas.
Consider now the € = 3 cases. As above, at fixed 7}, transport
becomes positive and increases in magnitude as «;, increases.
Similarly, at a given «,, the magnitude of transport increases
with 7. For the classic SI (a,=0), the equilibrium and
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Figure 5. Dust density snapshots of the AdSI (e = 3, 77 = 0, a3, = 0.1, run E3eta0am01). The top panel shows the linear growth phase, the middle panel shows the

first saturated turbulent state, and the lower panel shows a second saturated state of
densities.

the system with fewer vertical filaments (after merging) but with higher dust

Table 2
Turbulence Properties of Simulations that Reach Saturation

Name 7 Qu State (Ts5)Eqm (083 Turb Qg Qgy Qg Tex Te Tez

€=3,N,=2%
E3eta005am0 0.05 0 C —2.35e—5 —7.6le-5 4.36e—6 2.87e—6 2.21e—6 0.06 0.09 0.06
E3eta005am001 0.05 0.01 C —2.19¢—5 —7.08e—5 431e—6 1.27e—6 2.22e—6 0.06 0.06 0.06
E3eta005am01 0.05 0.1 C —7.81e—6 7.65e—5 7.04e—6 1.13e—3 437e—4 0.06 1.47 1.02
E3eta0005am0 0.005 0 T —2.35e—7 —3.58e—7 3.36e—8 1.32e—7 2.87e—7 0.09 0.21 0.36
E3eta0005am001 0.005 0.01 C —7.81e—8 2.36e—7 1.42e—7 6.56e—6 2.04e—7 0.18 1.14 0.24
E3eta0005am01 0.005 0.1 C 1.38¢e—6 8.40e—6 4.77e—7 5.58e—5 6.79¢e—7 0.09 1.23 0.15
E3eta0am001 0 0.01 T 5.87e—10 3.27e—8 7.27e—9 2.44e—17 4.96e—8 0.21 1.11 0.51
E3eta0amO01 0 0.1 C 5.87e—8 7.73e—6 5.37e—7 5.62e—5 1.32e—6 0.09 1.32 0.21

e=02, N, =2%
E02eta0005am01 0.005 0.1 T 1.70e—5 4.45e—6 1.40e—6 2.84e—5 1.61le—6 0.15 0.72 0.12
E02eta0am001 0 0.01 T 1.44e—9 1.24e—8 4.86e—9 1.73e—7 2.75e—8 0.18 0.84 0.27
E02eta0amO1. 0 0.1 T 1.44e—7 2.08e—6 3.89e—7 4.65e—5 4.39e—7 0.09 1.47 0.09

Note. The columns from left to right are: name of the runs, radial pressure gradient, Maxwell stress, end state, equilibrium and turbulent contributions to gas angular
momentum transport, gas mass diffusion coefficients in each direction, and correlation times in each direction.

turbulent parts of agg have comparable magnitudes, though the
latter is larger. However, with increasing oy, at fixed 7, the
turbulent contribution to ags well dominates the transport. For
example, for E3eta0amO1 the turbulent-to-equilibrium transport
ratio is 0(102). However, the total transport is still relatively
weak with agg <1077

For dust-poor disks with e = 0.2 and 77 = 0 (so the system is
driven by AdSI), we still find the turbulent transport dominates
the equilibrium value, but here only by a factor ~10.
Curiously, we find the run E02eta0005amO1, with a weak
pressure gradient of 77 = 0.005, the turbulent transport is

subdominant. This suggests that the classic SI may have
nonnegligible (negative) contributions in this case.

4.3.3. Mass Diffusion

In Table 2, we calculate the bulk diffusion coefficients for the
gas in the ith direction, oy, and list the corresponding
dimensionless correlation times, 7.; These are related via the
velocity dispersion 6v;; see Equation (19). For tightly coupled dust
with St < 1, we expect gas and particle diffusion coefficients to
be equivalent (Youdin & Lithwick 2007; Youdin 2011).
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Figure 6. Spectra of the vertically averaged gas kinetic energy density for the
classic SI (top, run E3eta005am0) and the AdSI (bottom, run E3eta0amO1).
The red dashed lines mark a slope of —5/3.

For 7j = 0.05 and oy, < 0.01, we find «; of 0(1076) and is
approximately isotropic. However, the strongly torqued disk
with ay,=0.1 (E3eta005am01) is clearly anisotropic and is
dominated by «y, of O(10%). Such an anisotropy with an
enhanced azimuthal diffusion is exemplified in torqued disks
with weak (including zero) pressure gradients. For example, in
the pure AdSI run E3eta0amO1, we find oy, of O(10~), which
is 2 orders of magnitude larger than «, .. This indicates that,
while the classic SI turbulence is approximately isotropic, AdSI
turbulence is anisotropic.

We find that longer correlation times in vy, is the dominant
cause of anisotropy in torqued disks. Figure 7 shows the
autocorrelation function of the gas velocity fluctuations for runs
E3eta005am0 (classic SI) and E3eta0amO1 (AdSI). In the latter
case, the profile of the v, autocorrelation function differs
significantly from that for v, and v,. In the plots, circles denote
the half-life of the autocorrelation functions. From these we
obtain correlation times 7. ; = 0.06P, 0.09P, 0.06P in the x, y, z
velocities, respectively, for the classic SI; and 7.;=0.09P,
1.32P, 0.21P for the AdSIL.

Overall, AdSI correlation times are longer, especially in the
azimuthal and vertical velocities, which are larger by a factor of
~10 and ~3 than the classic SI, respectively. However, while
the corresponding a, , for the AdSI is also larger by about an
order of magnitude; oy, is slightly smaller, and a,, is
significantly smaller than the classic SI, see Table 2. This
suggest weaker turbulent stirring in the (x,z) plane with smaller
meridional velocity fluctuations (Equation (19)).

4.4. Radial Drift of Dust

We compare the drift of solids between the classic SI
(E3eta005am0) and the AdSI (E3eta0amO1) when the systems
are in a quasi-steady turbulent state at t=30P. We follow a
similar methodology as Johansen & Youdin (2007), who
models dust as Lagrangian particles and counts the number of
particles with a given velocity and their average ambient
density. Here, we sum the dust mass from grid cells with w, to
wy+ 107°C,, then divide by the total dust mass to obtain the
mass fraction of dust in a given radial velocity bin. We also
calculate the average dust density in each bin. The result is
shown in Figure 8.

Hsu & Lin

For the classic SI, we obtain similar results as Johansen &
Youdin for tightly coupled grains. Namely, the distribution is
approximately Gaussian with high dust densities picking up
larger inward drift speeds. This is opposite to the equilibrium
drift solution (Equation (15) with ay,=0), which predicts
slower drift with increasing dust-to-gas ratio. This can be
explained by high-density dust clumps experiencing a weaker
gas drag as it is only subject to drag on their surface, while
grains inside the clump are shielded from the exterior gas. This
results in a dust clump having an effectively longer stopping
time than an individual dust grain (Johansen & Youdin 2007).

By contrast, the distribution for the AdSI is somewhat
negatively skewed with low dust densities having the fastest
inward drift. This is in fact consistent with the equilibrium drift
given by Equation (15) (with 77 = 0), as for St < 1,

ath
1+ €

C, =0, St< 1). (26)

Wy X —

Thus w, becomes more negative with decreasing e. Here, dust
is dragged inward by the accreting gas. Notice the above
expression is independent of St. Thus, an increased effective
stopping time for a dust clump does not affect its drift speed.
Instead, the increased e should slow down drift. Indeed, higher
dust density regions have smaller |w,|, but regions with w, >0
cannot be explained with the equilibrium drift solution above.

The AdSI result shares some resemblance with cases of the
classic SI for St=1 as considered by Johansen & Youdin. As
noted by Youdin & Johansen (2007), for marginally coupled
grains, the azimuthal drift also becomes nonnegligible even for
the classic SI. This suggests that azimuthal drift makes a key
difference in the behavior of dust clumps in the turbulent state.

4.5. Dust Concentrations

We examine the propensity for the dust to concentrate or
clump in Sl-turbulent disks. Recall that our models do not
include self-gravity and we assess whether or not gravitational
collapse would occur based on the Roche density given by
Equation (25).

All of the clumping cases in our dust-rich (e = 3) runs are in
the upper right region of Figure 1, which indicates that a
sufficiently large 7, oy, or both, can concentrate dust
efficiently.

None of our dust-poor (e = 0.2) runs achieve strong clumping.
However, we find that dust can still concentrate significantly if
oy /T is sufficiently large. These correspond to the turbulent
cases shown in the upper left region of Figure 2. For reference,
the run with (¢, 7, ay) = (0.2, 0, 0.1) attains Pd. max = 44p, in
the saturated state, which is ~200 times larger than the initial
dust-to-gas ratio. For (e, 7, apr) = (0.2, 0, 0.01) we find
Pd. max = 3po» which is still an order-of-magnitude enhancement.
However, increasing 77 — 0.005 for this case results in an
unsaturated state. Thus, in dust-poor accreting disks, the radial
pressure gradient works against dust concentrations.

Figures 9 and 10 shows the time evolution of the vertically
averaged dust density and radial dust mass flux for runs
E3eta005am0 (classical SI) and E3eta0amO1 (AdSI), respec-
tively. These spacetime plots show the formation and evolution
of dust filaments. Black arrows are drawn (by inspection) to
indicate their movement. These large-scale filaments are not
easily discernible in snapshots of the classic SI (Figure 4), but
appear after vertically averaging the fields.
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classic SI (left panel) and the AdSI (right panel). The vertical, blue dashed line corresponds to the equilibrium drift velocities in each case.

For the classic SI, Figure 9 shows the emergence of two
dust filaments at r~30P with a separation of 0.1H,. They
have azimuthal velocities closer to Keplerian values (which
corresponds to w, =0) than the ambient disk. We find the
filaments slowly move inward with a velocity of wygp~
—9x 107*C,. Note that this is the filament’s group velocity
(i.e., the gradient of the arrows) and not the dust fluid’s radial
velocity within the clump. These two filaments do not merge
within the run.

By contrast, in the AdSI case, Figure 10 shows that multiple
filaments emerge at the beginning of the nonlinear state
(t~ 10P). These small-scale filaments then undergo pair-wise
merging and eventually the system is left with three filaments.
This process is also visible in the middle and bottom panels of
Figure 5. Each merging event also increases the local dust
density, which again differs from the classic SI case where each
filament becomes denser individually. Notice there that the
filaments’ group radial velocity is still negative, despite regions
of outward dust motions within them.

For completeness, we show in Figure 11 the spacetime plot
of the vertically averaged dust density and radial mass flux for
an AdSI run with € =0.2 (E02eta0amO1). As in the dust-rich

10

case, multiple filaments emerge from the linear instability, but
now with much faster inward drift speeds, which is consistent
with the torque-induced drift given by Equation (26), which
increases in magnitude with decreasing €. As seen in the figure
with the middle yellow arrow, this reduction facilitates merger
events as a denser filament’s drift is reduced, it can capture
incoming, lighter filaments with faster inward drifts.

4.6. AdSI in Viscous Disks

In the limit of vanishing gas viscosity and dust diffusion,
both the classic SI and the AdSI can grow on arbitrarily small
scales (LH22). This means that in inviscid simulations the
system is always unstable on the grid scale. Here, we rerun
several simulations with a small viscosity v = o CsH, and a
diffusion coefficient D of the same value, to check that our
main results on the AdSI are unaffected by underresolved
modes at the grid scale. These simulations were extended
slightly to capture filament merging, which was found to affect
the maximum dust densities.

Figure 12 shows the time evolution of the maximum dust
density perturbation for selected runs with 77 = 0, a,,=0.1
with e = 107° (solid), ayie = 1077 (dashed—dotted), and
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Figure 9. Time evolution of the vertically averaged dust density (left) and
radial dust mass flux (right) for the classic SI (run E3eta005am0). Arrows are
drawn by inspection and indicate the drift of dust filaments.
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Figure 10. Same as Figure 9, but for the AdSI (run E3eta0amO1).

Qyise = 107 (dashed). The red and blue curves correspond to
€ =3 and 0.2, respectively.

Unsurprisingly, a larger viscosity prolongs the linear phase
of the instability, as growth rates are reduced and small-scale
modes are suppressed (LH22; see also the Appendix). In fact,
for ayie=10"% the e=0.2 disk only just saturates at
0Pg.max /Po ~ 1 and the € =3 disk i 1s still in its linear growth
phase at the end of the simulations.” In the discussion below,
we focus on i = 1078 and 1077, for which the AdSI grows
and saturates into a quasi-steady turbulent state.

Con51der the e =3 runs. We find for both an; =107 and
1077 the system meets the clumping condition with Pd.max ™~
550p, at the end of the runs. However, there is a phase
(t=40-58P) in which the higher-viscosity run w1th Qyise = 107 7

attains a larger dust concentration than v, = 1078,

We find this counter-intuitive result is due to the earlier
merging of filaments in the higher-viscosity case. This is shown
as snapshots of the dust density in Figure 13, where we also

4

We were not able to further extend the ayi. = 107 simulations due to the

computational cost.
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Figure 11. Same as Figure 10, but for the AdSI in dust-poor disk with ¢ = 0.2
(run E02eta0amO1).

Figure 12. Time evolution of the maximum dust density perturbation in
viscous simulations of the AdSI with 77 = 0 and «,, = 0.1. The red lines and
blue lines corresponds to € = 3 and 0.2, respectively. The solid lines, dashed—
dotted lmes and dashed lines corresponds to ovsc = 1078, aiee = 1077, and
Qyise = 1078, respectively. The horizontal dashed—dotted line corresponds to
the clumping condition, Equation (25).

show the inviscid run for comparison. Three filaments remain
in the inviscid run with small-scale eddies both within the
filaments and in between them. However, the viscous run has
already reached a final saturated state with a single filament. (A
single filament end state was also found for s = 1078)
Notice the smooth flow exterior to the filament, and the larger-
scale disturbances within the filament compared to the inviscid
run. This suggests that small-scale disturbances work against
merging, so its removal by viscosity helps clumping, at least
for dust-rich disks.

For €¢=0.2, dust concentrations with «yjsc = 1077 are
consistently weaker than with . = 107, with Pa.max ~ 4Po
and 14p,, respectively, at the end of the runs. We again find
this is related to filament merging. Figure 14 shows the final
dust density snapshots of the inviscid and viscous runs with
€ =0.2. In the former case, the system has already merged into
a single filament, while two filaments are sustained in the latter
case. Here, there is a lack of small-scale activity exterior to the
filaments in either case. It is possible that in dust-poor disks,
viscosity somehow works against merging, unlike the dust-
rich case.
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Figure 13. Dust density in the inviscid (. = 0) and viscous (Qyisc = 1077) runs of the AdSI (e = 3, 7 =0, ay = 0.1).
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Figure 14. Same as Figure 13, but for ¢ = 0.2.

However, given the turbulent nature of these simulations, with e =0.2, 7 = 0, and ;= 0.1, the AdSI led to an 0(102)
whether one or two filaments are formed in the end could be times increase in py. While the saturated e ~ 44 is insufficient
random. A statistical approach may necessary to assess the for gravitational collapse (unless the disk is somewhat massive
relation, if any, between viscosity and filament merging. with a Toomre Q <10), it does mean that dust feedback

becomes dynamically important via the AdSI. This result is
distinct from the classic SI. For example, Johansen & Youdin
(2007)’s “AA” simulation with e = 0.2° only attains a ~ 20%
5.1. Enhanced Dust Concentrations in Accreting Disks increase in € in the saturated state.

On the other hand, in dust-poor disks, the AdSI is weakened
by the background radial pressure gradient. We thus conclude
that in dust-poor, accreting disks the SI is only relevant in

5. Discussion

Our simulations demonstrate that a background gas accretion
flow enhances the SI. As shown in Figure 3, at fixed radial
pressure gradients, 7, the SI attains larger dust density

perturbations with increasing magnitude of the accretion flow, regions of weak pressure gradients, and takes the form of
which is parameterized by ay, in our models. Gas accretion the AdSL.

becomes more important for smaller 7. In particular, even in the Finally, we remark that although our disk models are
absence of a radial pressure gradient (7 = 0), the system is originally motivated by PPDs subject to magnetic torques or
unstable for oy, >0 and can reach strong dust clumping for winds, our results are not limited to this scenario. As
sufficiently large «y,. In the limit of |ay, /7| > 1, the SI is emphasized in LH22, the key ingredient is a laminar gas

powered by the azimuthal drift between dust and gas, unlike the

classic SI, which is powered by radial drift. 5 e wAAn .
. Johansen & Youdin’s “AA” run has the same physical parameters as our
We find the AdSI can effectlvely concentrate dust even when EO02eta005am0 simulation, but we were not able to run it to saturation at our

the initial dust-to-gas ratio is less than unity. In our simulation grid resolutions due to computational cost.

12
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accretion flow, so our findings also apply to gas accretion
driven by other means.

5.2. Merging Filaments in Accreting Disks

We find the AdSI initially forms multiple narrowly
separated, vertically elongated filaments, which is visible in
direct snapshots of the dust density (e.g., Figure 5). This
contrasts with the classic SI where a few filaments form that is
only visible in spacetime plots after a vertical average (e.g.,
Figure 9).

The fact that the AdSI forms more filaments than the classic
SI is qualitatively consistent with the linear theory developed
in LH22: as 77 — 0, unstable modes shift to larger K,. For
e=3, 7 =0.05 and St=0.1, the classic SI has an optimum
K, ~ 10°. However, AdSI growth rates diverge with K, unless
dissipation is included. We expect a finite grid resolution to
have a similar effect, implying the most unstable, resolvable
AdSI has K, ~ 10*. We may thus naively expect the AdSI to
produce 10 times the number of filaments than the classic SI, as
roughly observed when comparing Figures 10 and 9.

The two filaments that emerge in our classic SI run do not
merge and remain separated by ~ 0.1H,. The lack of merging
may be due to the limited integration time, domain size, or
both. As shown by Yang & Johansen (2014), with a sufficiently
large horizontal box size (1.6H, in their case), classic SI
filaments are typically separated by 0.2H,.

By contrast, we find that filaments readily merge in the AdSI
run. For e=3, three filaments remain at the end of the
simulation with a maximum separation of 0.1H, (upper panel
of Figure 13). We suspect this represents typical separations
between AdSI filaments, as our box size is relatively large
compared to AdSI radial length scales, and that multiple
merging events have already occurred. That is, at high dust-to-
gas ratios AdSI filaments are more closely packed than that
produced by the classic SI. On the other hand, for e = 0.2 only
one filament remains (upper panel of Figure 14), in which case
one cannot determine the filament separation (Yang &
Johansen 2014).

We remark that for the AdSI, it is the merging of filaments
that successively increases the maximum dust-to-gas ratio. This
differs from the classic SI, where e quickly saturates near its
final value. This can be seen in Figure 3 by comparing the red
curve in the leftmost panel (AdSI), which shows a secular
increase after the linear phase, and the green curve in the
rightmost panel (classic SI), which immediately surpasses the
clumping condition. It, therefore, takes longer for the AdSI to
reach strong clumping than the classic SI.

5.3. Dust Diffusion in Accreting Disks

We find that when o, >0, i.e., with an accretion flow,
azimuthal mass diffusion can be significantly stronger than in
the radial and vertical directions. The classic SI, on the other
hand, produces more isotropic diffusion. Taken at face value,
this would suggest that in accreting disks it is more difficult for
gravitational collapse to proceed in the azimuthal direction,
which would favor the formation of dust rings. However, full
3D simulations are needed to address this issue.

We remark that vertical diffusion driven by the AdSI is due
to high-K, modes of instability. Because AdSI growth rates are
almost independent of K, (LH22), all vertical wavenumbers
grow equally, but low-K, modes have little vertical velocities.
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We caution that although AdSI can operate in razor-thin disks,
such models would be misleading because they artificially
suppress K, = 0 modes, which are just as important as K, = 0.

In a stratified disk, vertical diffusion balances dust settling to
set the particle layer scale height,

Qg 7

Hy ~
¢ St

H,, @7

for o < St (Dubrulle et al. 1995). We find o, is 0(10~%) for
the classic SI and the AdSI, which gives Hyq ~ 0.003H, in both
cases for St=0.1. One therefore cannot distinguish between
the AdSI and the classic SI from the particle scale height alone.

However, when both a radial pressure gradient and a strong
torque are present, for example in our run with
€ = 3,7 = 0.05, and ay; = 0.1, p ; can reach 0(10™%), giving
Hy~0.03H,. Whether this is the classic SI enhanced by an
accretion flow or the simultaneous presence of the classic SI
and the AdSI, should be clarified.

In any case, given that most disk regions possess a nonzero
radial pressure gradient (with a nominal 77 ~ 0.05), our results
suggest that in parts of the disk with rapid gas accretion, dust
layers can be puffed up to a few percent of the gas scale height
just from the SI.

5.4. Planetesimal Formation via the AdSI

Previous numerical simulations of stratified disks show that
dust clumping via the classic SI is favored by weaker radial
pressure gradients (smaller 77, Bai & Stone 2010b; Sekiya &
Onishi 2018) at fixed metallicities (the vertically integrated
dust-to-gas ratio). However, this result cannot be extrapolated
to the limit of 77 — 0, for example near a pressure bump, as the
linear instability shifts to arbitrarily small scales and is
stabilized when 7} = 0.

The AdSI does not require 7 = 0, provided that the gas
undergoes accretion. However, at dust-to-gas ratios 2 1, the
AdSI takes longer to produce strong clumping than the classic
SI, because the AdSI requires dust filaments to merge: the
system evolves through a series of quasi-steady states separated
by merging events that increase the maximum dust densities.

Furthermore, a dust clump, even at the Roche density, must
still exceed a critical length scale I, = L/6 /StH, to overcome
diffusion and undergo gravitational collapse (Klahr & Schreiber
2020). Here, 6 is a dimensionless measure of dust diffusion
due to turbulent gas stirring. In our fiducial AdSI simulation
(E3eta0am01), 6 is dominated by azimuthal diffusion with
8~ 107%; while for the classic SI (E3eta005am0) § ~ 10~°. This
implies that AdSI clumps should be ~3 times larger than classic
SI-clumps to collapse.

We suggest that, while in disk regions of vanishing pressure
gradients the AdSI can develop (whereas the linear, classic SI
cannot), planetesimal formation via the AdSI would still be less
efficient than it would be via the classic SI in regions of
nominal pressure gradients.

The above discussion is based on our simulations with € = 3.
However, another key distinction between the AdSI and the
classic SI is that the AdSI can raise the local dust-to-gas ratio
to 20(1) even if € <1 initially; while none of our classic SI
runs initialized with e=0.2 attain order-unity dust-to-gas
ratios. This suggests a mechanism of “AdSI-assisted” planete-
simal formation via the classic SI in low-metallicity disks, as
follows.
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Consider an accreting disk with a weak, but nonvanishing
radial pressure gradient and € < 1. The AdSI first develops and
increases € > 1, from which the classic SI can then develop and
drive strong clumping, provided it can overcome the under-
lying, small-scale AdSI turbulence (Chen & Lin 2020; Gole
et al. 2020; Umurhan et al. 2020). In this picture, the AdSI
provides a mechanism to raise the local metallicity, as required
for planetesimal formation via the classic SI (Johansen et al.
2009).

5.5. Caveats and Outlook

As discussed above, our fiducial classic SI and AdSI
simulations imply dust layer thicknesses of about 2H 2~
0.06H,, which is comparable to our vertical domain size L. For
less unstable runs, 2Hy can be significantly smaller than L.,
implying stratification effects could be significant.

Furthermore, the AdSI produces vertically extended fila-
ments. It is not clear if these are geometrically compatible with
a background vertical disk structure. It will therefore be
necessary to extend the current models to stratified disks.
Additional complications are expected, however, for example
from the vertical shear in the disk’s rotation (Ishitsu et al. 2009;
Lin 2021).

In addition, our models impose axisymmetry and neglect
particle self-gravity, which prohibits a proper assessment of
planetesimal formation. Although some of our runs do meet the
condition for strong clumping, whether or not gravitational
collapse will follow can only be determined with full 3D,
stratified models with self-gravity. This is particularly impor-
tant for the AdSI as it appears to be anisotropic with more
efficient azimuthal diffusion.

We model accretion mediated by a global magnetic field by
applying a constant gas torque in the shearing box. In reality,
this torque results from nonideal MHD effects (Lesur 2020)
that likely vary with space, time, and the gas-dust dynamics.
Our hydrodynamic approach automatically eliminates genuine
MHD phenomena that may also interact with dust dynamics
(LH22). Global MHD simulations including dust and feedback
are therefore necessary to verify our main results.

We mostly considered inviscid disks. Even our most viscous
run with i = 107° is still significantly smaller than what
might be expected in reality. In PPDs, hydrodynamic
instabilities produce agg > 1077 (Lesur et al. 2022), which
may or may not translate to an equivalent c;s.. Nevertheless, if
hydrodynamic turbulence behaves like a Navier—Stokes
viscosity, then the AdSI can be expected to grow much more
slowly than in the cases examined here, if at all. Whether or not
the AdSI can produce significant dust concentrations at
Qlyise = 10 will need to be explored with long-term
simulations.

Finally, we have only considered one species of dust grains
characterized by a single stopping time. Recent work has
shown that the classic SI can be weakened when a particle size
distribution is considered such that the total dust-to-gas ratio
and maximum Stoke number are both < 1 (Krapp et al. 2019;
Paardekooper et al. 2020; Zhu & Yang 2021). When either of
these is overcome, the polydisperse SI grows fast and behaves
similarly to the single-species SI (Yang & Zhu 2021). In light
of this, and as the AdSI can grow rapidly for both high and low
dust-to-gas ratios, it may be more robust to a particle size
distribution. This will need to be verified or refuted with
multispecies simulations of the AdSI.
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6. Summary

In this paper, we conduct high-resolution, axisymmetric,
unstratified shearing box simulations of a dusty PPD with an
underlying gas accretion flow. We are motivated by recent MHD
simulations of PPDs that exhibit laminar gas accretion driven by
magnetic winds and stresses. We are interested in how the SI
operates in such an accreting disk. As a simplification, we forgo
a full MHD treatment and instead apply a torque onto the gas in
an otherwise hydrodynamic model.

We previously demonstrated, using linear theory, a modified
form of the SI in accreting disks, the AdSI, that is driven by the
azimuthal drift between dust and gas (LH22). The AdSI is
unlike the classic SI of Youdin & Goodman (2005) that is
driven by the radial drift between dust and gas. Consequently,
the AdSI can operate in the absence of a radial pressure
gradient, which is a prerequisite for the classic SI.

Here, we explore the nonlinear evolution of the AdSI. Our
main findings are as follows.

1. We verify the linear theory of the AdSI developed
in LH22, showing that even in the absence of a radial
pressure gradient, an accreting, dusty disk can be
unstable, evolve into a turbulent state, and trigger dust
concentrations in vertically extended filaments.

2. AdSI-induced dust filaments merge over time. For dust-
rich disks initialized with a dust-to-gas ratio of 3, filament
merging eventually drives the maximum dust-to-gas
ratios to exceed 100, which is the critical value for the
gravitational collapse of a dust clump in a disk with
Toomre parameter of about 20.

3. Even in dust-poor disks with an average dust-to-gas ratio
of 0.2, the AdSI can concentrate dust to a maximum dust-
to-gas ratio of about 40. This contrasts with previous
studies on the classic SI in dust-poor disks, which only
yield 20% enhancement in dust densities (e.g., Johansen
& Youdin 2007).

4. AdSI-driven turbulence is anisotropic with azimuthal
mass diffusion coefficients up to an order of magnitude
larger than that in the radial and vertical directions.

We speculate that planetesimal formation directly via the AdSI
in the absence of a radial pressure gradient is still less efficient
than that via the classic SI in the presence of a nonvanishing radial
pressure gradient. This is because AdSI-driven disks only
gradually develop dense dust clumps via filament merging,
whereas the classic SI quickly attains it. However, in disk regions
of low metallicity, the AdSI can still raise midplane dust-to-gas
ratios to values above unity, which may then enable the classic SI
to ensue more effectively and facilitate planetesimal formation.
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Appendix
Code Test

We test our modified FARGO3D code by simulating the AdSI
and comparing growth rates with that from the linear theory
developed by LH22. The equilibrium state is the same as that
used in the main text (Section 2.3). Here, we set 7} = 0 so the
classic SI does not apply. We fix ¢ = 3 and consider cases with
and without a gas viscosity and a corresponding dust diffusion.
In viscous runs we use e = 1075,

We seed the initial conditions with unstable modes obtained
from solving the corresponding linear eigenvalue problem
described in LH22 (Appendix B, but without magnetic fields).
We reproduce them here for convenience:

)
U& = —ikxvx& — ik, by, —
Pe Pe

ik. 6v., (A1)

6
00V, = —ik, v OVy + 2§00V — ikaf&

Py
6 § .
— S —w) Y (6w, — ) + SFV,
Ts pg pd Ts
(A2)
06vy = —ike vy vy — Qévx — i(wv — )
2 T ’

é‘ .
| e BPa) € s~ buy 4 SEY (A3
pg Pa Ts

) .
obv, = —ikvi by, + i(éwZ — bv,) — ik, Cszﬁ + OF",
Ts Pg
(A4)
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5 8
P — ik 2P ik wy — ik, 6w, — D2
Pa Pd
s
| %P0 | (AS)
pd pg

oowy = —ik,wybw, + 2Q06w, — l(éwx — bvy), (A6)

Ts

oowy = —ik,w,éwy — %6wx - i(éw_\, — ovy), (A7)
Ts

obw, = —ik,wow, — %(6wZ — ov,), (AB)

where the linearized viscous forcess6 are
SFYse = V[(%kf + kf)évx — %kxkzévz], (A9)
SF)S = —vk?bv,, (A10)
SFY = —u[(kf + %kf)évz — %kxkzévx]. (A11)

In the above, 0A is a complex perturbation amplitude of any
field A; k. and k, are real radial and vertical wavenumbers,
respectively, with k2 = k2 + kzz; and the complex growth rate
0=s—iw, where s is the real growth rate and w is the
oscillation frequency.

We normalize the wavenumbers by H, so that k.. = K, ./H,. We
follow Youdin & Johansen (2007) and add a pair of eigenmodes
with oppositely signed K, to produce standing waves in z.

For the tests below we fix K,=100. The computational
domain is one wavelength in each direction, i.e., L, , = 27/k,_,
and we adopt a resolution of N, x N,=256 x 256. We
measure growth rates by tracking the evolution in the
maximum dust density perturbation.

Figure 15 show growth rates as a function of the Maxwell
stress applied to the gas, «u for fixed K,=5000;while
Figure 16 show growth rates as a function of K, for fixed

e=3,S, = 0.1, K, = 5000, K, = 100,7 = 0

100
i
~
V) [ y
107} / —ie=0
- d; == Qtyisc = 10 ]
TR o Simulation ]
107 1072 107! 10°

Qg

Figure 15. Comparison between growth rates of the AdSI computed from linear theory (blue curves) and that measured from numerical simulations (red circles), for

fixed e =3, St=0.1, 7 = 0, K, = 100, as a function of a;,.

% The viscous terms in LH22’s Equations (B2)—(B4) were erroneously written
to correspond to a viscous stress tensor of the form vV -v. The actual form used
in that and the present work is given by Equation (9) and its linearized version
is given by Equations (A9)-(A11). However, as the gas dynamics are almost
incompressible, whether Vv or Equation (9) is used makes little difference.
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e=3,S, =0.1,ay = 0.01, K, =100,7 =0

100;'

Loy ——""

—Qyise = 0 3
-8

- Qyise = 10

o Simulation

104 10°

K,

Figure 16. Similar to Figure 15 but for fixed ay, = 0.1 and varying K.

ay, = 0.1. Simulation results are shown in red circles and linear
theory is shown as the blue curves. All of the measured growth
rates from the numerical simulations are in excellent agreement
with the theoretical values.

We note that the linear AdSI does not depend on the
vertical direction (LH22; except at high K, where viscosity
and diffusion take effect, if included), i.e., the instability
persists for K, = 0. We have verified this by performing one-
dimensional simulations (by setting N,=1) and found the
same growth rates as in the ones above and in agreement with
linear theory.
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