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Cosmic Milestone: NASA Confirms 5,000
Exoplanets

Credit: NASA/JPL-Caltech




The era of exoplanet sciences
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https://exoplanets.nasa.gov/

KOI-5 Triple-Star System
KOI-5C

Exoplanet

KOI-5Ab

KOI-5B

Credits: Caltech/R. Hurt (IPAC)
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Real prOtoplanetary dISkS (Andrews et al, 2018; Long et al 2018)

MWC 480 HD 143006
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Disk-planet interpretation

HL Tau (ALMA Partnership et al. 2015)
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Observations of planets in a disk!

AB Aur (Currie et al, 2022)
PDS 70 (Muller et al, 2018)

Subaru Telescope Image of AB Aurigae
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One planet, multiple scales
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First: Dust settling

well-mixed dust in young disk dust sediments to the midplane

planet(esimal) formation



First: Dust settling

Oph 163131 (Villenave et al. 2022)
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But PPDs are likely turbulent

Vertical shear instability Convective overstability Zombie vortex instability
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Pfeil & Klahr (2020) Lyra (2014) Barranco et al. (2018)

Lin & Youdin (2015)
Cui & Lin (2021)
See Lesur,..., Lin, et al. (2022) PPVII review



Dust settling vs VSI turbulence
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Next: Planetesimal formation




Relative motions between dust and gas drives instability
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Radial drift of dust grains

slows down,
drifts in
friction
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State-of-the-art simulations (Nesvorny et al., 2020)



https://www.youtube.com/watch?v=WA4Y8VCqBqE

Streaming instability theory: Assumptions

e disk Is non-turbulent—>_

e disk has no vertical structure—>-
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Streaming instability is easily killed by turbulence
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Unstratified models for midplane dynamics

Little vertical structure
because of symmetry
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Real dust layers have vertical structure

3 dust with Keplerian rotation
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A new Instability In stratified dust layers
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Can modern disk models help?

Due to large-scale
magnetic fields

(e.g. Riols et al. 2020, Cui & Bai 2021)



Sl in accreting bumps: Linear theory
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Sl in accreting bumps: Nonlinear evolution
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Planets form somehow, so what’s next?
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But each observation require many simulations

AS 209, DSHARP (Zhang et al. 2018)
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Can we automate this process?



Modeling planet gaps with artificial/convolutional NN

Image Data

Numerical Data
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Estimating planet masses around HL Tau

« Hydrodynamic simulations
(Dong et al. 2015, Dipierro et al. 2015, Jin et al. 2016)

Mp — 0.2 — O.35MJ, 0.17 — O.27MJ, 0.2 — O.SSMJ

e Disk-Planet Neural Network
(Auddy & Lin, 2020)

Mp — 0.24MJ, O.21MJ, O.ZM]

ALMA Partnership (2015)



Simulation caveats

 Focus on axisymmetric structures
 Planet on fixed orbits
e 2D disk



Some observed disks are asymmetric

(van de Marel, et al. 2021)
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Can planets also explain them?
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Migrating planets in dusty disks
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Three-dimensional models
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Puffed up rings in observations: Sign of planets?
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Summary

« We are in the era of observing planet formation

 The streaming instability is the leading theory for
planetesimal formation, but realistic disk conditions may
challenge it or provide new pathways to clumping

e Planets continue to interact with their nascent disks to

produce observable structures, which can in turn be used
to reveal or rule out hidden planets



Opportunities at ASIAA and NCTS
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