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ABSTRACT

Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances
turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained
beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is
disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain
gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support;
and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of
viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box
approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in
3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable,
although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We
apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity,
and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable
on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk
fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in
realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed
transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state
itself.

Key words: accretion, accretion disks – hydrodynamics – instabilities – methods: analytical – planets and satellites:
formation – protoplanetary disks

1. INTRODUCTION

Understanding the gravitational stability of rotating disks is
central to many astrophysical problems (Kratter &
Lodato 2016). In the context of gaseous protostellar or
protoplanetary disks (PPDs), gravitational instability (GI) has
two applications. It can provide gravitational torques to
transport angular momentum outwards and thus enable mass
accretion (Armitage 2011; Turner et al. 2014). GI may also lead
to disk fragmentation, which has been invoked to explain the
formation of stellar/sub-stellar companions or giant planets at
large radii (Boss 1997; Kratter & Matzner 2006; Stamatellos &
Whitworth 2009; Helled et al. 2014) Studying these nonlinear
phenomena requires direct numerical simulations. Neverthe-
less, physical insight can be obtained through analytical
modeling.

The standard metric for the (inverse) strength of disk self-
gravity is the Toomre parameter,
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(Toomre 1964). Here, cs is the isothermal sound-speed, κ is the
epicyclic frequency (which equals the rotation frequency Ω in a
Keplerian disk), Σ is the surface density and G is the
gravitational constant. The Toomre parameter is a measure of
the destabilizing effect of self-gravity ( SG ) against the
stabilizing effect of rotation (κ) and pressure (cs). This is
evident from the dispersion relation,

p k= S - -s G k c k2 , 2s
2 2 2 2∣ ∣ ( )

which relates the growth rate s and radial wavenumber k for
local, axisymmetric waves in a two-dimensional (2D, razor-
thin), inviscid and isothermal2 disk. When <Q 1, there is a
range of k for which such disturbances are unstable. Non-
axisymmetric modes can develop for larger, but still order-
unity values of Q (Lau & Bertin 1978; Papaloizou & Lin 1989;
Papaloizou & Savonije 1991).
We emphasize that the oft-used dispersion relation and

corresponding Toomre parameter (Equations (1) and (2)) are
derived from idealized conditions: the base disk is laminar,
inviscid, and does not experience any net thermal losses3

(hereafter “cooling”). However, real disks can cool, for
example, due to radiative losses. Accretion disks may also be
turbulent, the dynamic and thermodynamic effect of which is
often modeled through an effective viscosity (Shakura &
Sunyaev 1973; Lin & Pringle 1987; Armitage et al. 2001;
Rafikov 2015).
However, the Toomre parameter is still widely applied to

viscous (turbulent), cooling accretion disk models (e.g.,
Gammie 2001; Cossins et al. 2009; Kimura & Tsuribe 2012),
despite the mismatch in the included underlying physics. We
show that including non-ideal physics, such as cooling and
viscosity, in fact modifies the classic dispersion relation, and
hence the condition for GI. Thus the Toomre condition alone is
insufficient to assess GI in realistic disks.
The goal of this work is to generalize the analytic treatment

of disk GI, by including cooling and viscosity, to allow a self-
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1 Steward Theory Fellow.

2 Equations (1)–(2) also apply to adiabatic disks if one takes cs as the
adiabatic sound-speed.
3 Isothermal disks implicitly assume heating and thermal losses are exactly
balanced at all times, so these do not cool in the current context.
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consistent discussion of GI in realistic accretion disk models.
We first review in Sections 1.1 and 1.2, respectively, how
cooling or viscosity can lead to GI even when >Q 1, by
removing pressure or rotational support. We then discuss in
Sections 1.3–1.4 how these effects may relate to the transition
from self-regulated GI to fragmentation seen in numerical
simulations. The rest of this paper is laid out in Section 1.5.

1.1. Cooling-driven GI

Cooling reduces pressure support against self-gravity. The
cooling time tc is the timescale over which the disk temperature
T is relaxed to some floor value, which may be zero. It is often
written as

b= W-t , 3c
1 ( )

where β is the corresponding dimensionless cooling time. This
type of parameterized cooling, first applied by Gammie (2001),
allows a range of thermodynamic responses to be explored.

In reality, PPD cooling is controlled by radiation from dust
grains (Bell & Lin 1994; Chiang & Goldreich 1997; D’Alessio
et al. 1997). Although most PPDs subject to GI are optically
thick, cooling parameterized by the β model formally only
captures optically thin cooling when used in numerical
simulations. It is, however, possible to modify the standard
cooling function to mimic optically thick cooling (see, e.g.,
Section 6).

Previous work has quantified the role of cooling primarily as
a means to reduce the sound speed term in Q (though see e.g.,
Clarke et al. 2007). Here we will quantify how cooling enables
GI even when >Q 1. For example, if perturbations can cool to
arbitrarily low temperatures (which, in fact, is a common
cooling prescription in numerical simulations), we find the
above dispersion relation is modified to read
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where γ is the adiabatic index. Cooling increases the growth
rate by reducing the magnitude of the pressure term. In fact, for
Î ¥t 0,c [ ) a formal condition for instability is

p kS >G k2 ,2∣ ∣

which is what would be obtained from Equation (2) with
pressure neglected ( c 0s ). This condition does not actually
depend on the cooling time, and instability is possible for any
finite Q. Thus, the mere presence of cooling changes the
qualitative nature of GI compared to the simple Toomre
condition.

1.2. Viscosity-driven GI

Viscous disks can also develop GI even when >Q 1. This is
because, as demonstrated below, viscosity removes rotational
support against self-gravity for long-wavelength disturbances
(Lynden-Bell & Pringle 1974; Willerding 1992; Gammie 1996).
A similar effect occurs in dusty fluids where the required
frictional forces are provided by dust-gas drag (Goodman &
Pindor 2000; Ward 2000; Takahashi & Inutsuka 2014). In fact,
this is a mechanism to enhance particle clumping for
planetesimal formation (Youdin 2005, 2011). Therefore it is
not unreasonable to expect analogous fragmentation in gaseous
disks due to viscosity.

It is conventional to write the kinematic viscosity ν as

n a=
W
c

, 5s
2

( )

where α is the dimensionless viscosity coefficient Shakura &
Sunyaev (1973). This parameterization can be modified to
include more complex dependencies on the fluid variables, but
Equation (5) is the general form.
For an isothermal, viscous, self-gravitating disk in 2D,

Gammie (1996) finds the approximate dispersion relation
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Assuming >Q 1, instability occurs if

p S >G c k2 ,s
2∣ ∣

provided that n ¹k 02 . This condition for viscous GI is
identical to what would be obtained from Equation (2) with
rotation neglected (W  0). That is, a classically stable disk
can be destabilized by viscosity as it reduces rotational
stabilization (Lynden-Bell & Pringle 1974).
For gaseous accretion disks, a Navier–Stokes viscosity is

often implemented (as above) to mimic hydrodynamic or
magnetohydrodynamic (MHD) turbulence (Shakura &
Sunyaev 1973). How well turbulence can be modeled as an
effective viscosity is a separate issue (Balbus & Papaloizou
1999). However, it is reasonable to assume that these
mechanisms, which are observed in simulations to transport
angular momentum outwards (and mass inwards), frustrate
rotational support.
In this work, we use viscosity to model two possible physical

effects of turbulence: heating via dissipation and angular
momentum transport. We emphasize that our model for GI
enabled by viscosity (hereafter viscous GI) does not assume a
particular origin for the viscosity. GI itself or other forms of
magnetic or hydrodynamic turbulence are allowed in this
framework. We will generalize the theory of viscous GI to
include an energy equation with viscous heating, irradiation,
explicit cooling, as well as three-dimensionality (3D) in order
to consider viscous GI in more realistic PPD models.

1.3. Relevance to Gravito-turbulent Disk Fragmentation

We develop a general framework for viscous disks without
assuming a specific origin for the viscosity. We will, however,
apply the theory to “gravito-turbulent” disks in which the
viscosity is associated with some underlying (classic) GI, as
described below.
Consider an initially laminar, Q 1 disk, without external

heating, as it cools. The disk temperature will decline until
=Q O 1( ), whence non-axisymmetric modes grow and heat the

disk through the dissipation of spiral shocks (Cossins
et al. 2009). This setup permits a quasi-steady, turbulent state
with =Q O 1( ) in which cooling is balanced by shock heating
to maintain thermal equilibrium (Gammie 2001; Shi &
Chiang 2014).
Global disk simulations (e.g., Lodato & Rice 2004) show

that the transport and heating associated with this gravito-
turbulence may be described as a local viscous process
provided that the disk-to-star mass ratio is small (0.25) and
the disk is thin (aspect-ratio 0.1). In this case the a and b

2
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parameters defined above are inversely related (see, e.g.,
Equation (24)). Recent vertically extended shearing box
simulations also confirm this relation in 3D disks (Shi &
Chiang 2014).

Numerical experiments, however, show that if the cooling
time is too small (or the viscosity is too large), say,

b b a a< > , 7c c( ) ( )

then the disk fragments (Gammie 2001; Rice et al. 2005, 2011).
In fact, in the absence of global effects, numerical simulations
show that there are two—and only two—possible outcomes for
self-gravitating, cooling disks: gravito-turbulence or
fragmentation.

There is considerable debate on the exact value of bc and
whether or not a critical cooling time can be defined at all
(Lodato & Clarke 2011; Meru & Bate 2011, 2012; Paarde-
kooper 2012; Hopkins & Christiansen 2013). There are, in
addition, numerical convergence issues when simulating disk
fragmentation, which we discuss in Section 7.

However, it is generally accepted that steady, gravito-
turbulent disks do not exist for sufficiently rapid cooling or
large viscosity (Johnson & Gammie 2003). This is intriguing
because, as highlighted in Sections 1.1–1.2, cooling or
viscosity can reduce gravitational stability independently of
their influence on the exact value of the classic Q. This
motivates a physical interpretation of disk fragmentation as the
inability to maintain a gravito-turbulent state due to secondary
instabilities driven by cooling and/or viscosity.

1.4. Instability of the Gravito-turbulent State

In this work, we formally treat the gravito-turbulent disk
described above as an equilibrium state, to which we apply
standard linear stability analysis. Thus by “perturbations” we
mean deviations away from this gravito-turbulent basic state.4

In our model, we interpret instability of such perturbations to
signify fragmentation. Although we cannot formally demon-
strate this, numerical simulations suggest that gravito-turbu-
lence and fragmentations are the only outcomes of classic GI.
Thus the failure to maintain the gravito-turbulent steady state
seems a reasonable description of fragmentation.

Indeed, our linear analysis for perturbations with respect to
the gravito-turbulent state predicts that PPDs will fragment
under similar conditions observed in numerical simulations
(e.g., b a~ ~3, 0.1c c , Gammie 2001; Rice et al. 2005).

1.5. Plan

The basic equations, disk equilibria, cooling and viscosity
models are given in Section 2. The linear stability problem is
defined in Section 3. We present results with parameterized
“beta” cooling in Sections 4 and 5 for 2D and 3D disks,
respectively. In Section 6 we consider PPDs with realistic
viscosity/cooling models, including radiative diffusion in 3D,
and determine where PPDs are gravitationally unstable and
why. We summarize our results in Section 7 with a discussion
of how our models may aid the physical understanding of
fragmentation in realistic PPDs.

2. BASIC EQUATIONS

We consider a 3D, self-gravitating, viscous disk with heating
and cooling. We use the shearing box framework to study a
small patch of the disk (Goldreich & Lynden-Bell 1965a). The
local frame co-rotates with a fiducial point in the unperturbed
disk at angular frequency Ω. The Cartesian co-ordinates
x y z, ,( ) correspond to the radial, azimuthal and vertical
directions in the global disk. The fluid equations are

r
r

¶
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where ρ is the density field and =v v v v, ,x y z( ) is the velocity
field. We assume an ideal gas so that the pressure P and thermal
energy density E are related by

g r= - =P E T1 , 11( ) ( )

where  is the gas constant and T is the temperature. For
simplicity we refer to the adiabatic index γ as that in
Equation (11) for both 2D and 3D disk models (cf. Johnson
& Gammie 2003). The gas gravitational potential Φ is given via
the Poisson equation,

p r F = G4 . 122 ( )

In the momentum equation (Equation (9)), the third, fourth/
fifth, and last term on the right-hand side represent the Coriolis,
tidal, and viscous forces (see below), respectively. We consider
Keplerian disks with shear parameter =q 3 2 and vertical
oscillation frequency W = Wz .
In the energy equation (Equation (10)) the source termsvisc

and Λ represent viscous heating and time-dependent cooling,
respectively, and ext represents any time-independent heat
source/sinks. We set  = 0ext unless otherwise stated.

2.1. Viscosity and Heating

The Cartesian components of the viscous stress tensor T are
defined by

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥r n n n dº ¶ + ¶ + -  vT v v

2

3
, 13ij j i i j b ij( ) · ( )

where rn is the shear viscosity. We also include a bulk
viscosity rnb for completeness, but will neglect it in numerical
calculations. The associated viscous heating is given by

 º ¶ v T , 14j i ijvisc ( ) ( )

where summation over repeated indices is implied.
We adopt a viscosity law

⎛
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where subscript “eq” denotes the equilibrium state and
rº = =c P z z0 0s0

2
eq eq( ) ( ). The dimensionless viscosity

4 This should not be confused with fluctuations with respect to the laminar
disk that maintain the underlying gravito-turbulence.

3
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coefficient a a r= P,eq eq( ) characterizes the magnitude of the
shear viscosity in steady state. The indices m l, are free
parameters chosen to model how the viscosity behaves in the
perturbed state. We adopt the same prescription for the bulk
viscosity but with a a b.

Our numerical calculations use m l= - =1, 0 so that rn is
time-independent, following previous studies of viscous GI
(Lynden-Bell & Pringle 1974; Hunter & Horak 1983;
Willerding 1992; Gammie 1996). This choice eliminates
viscous over-stability (Schmit & Tscharnuter 1995; Latter &
Ogilvie 2006), which is unrelated to self-gravity, and would
otherwise contaminate our results.

While steady-state viscosity values can be determined
analytically or numerically (e.g., Kratter et al. 2008; Martin
& Lubow 2011; Rafikov 2015), the time-dependent behavior is
not well-explored. We emphasize the choice m l= - =1, 0 is
made to bring out the physical process of interest—viscous GI.
Interestingly, though, Laughlin & Rozyczka (1996) have
suggested a n µ S1 dependence when modeling the evolution
of 2D self-gravitating disks as a viscous process. We note that
if rn is constant in time then increasing the density corresponds
to reduction in the viscosity. This is perhaps consistent with
numerical simulations of disk fragmentation which show that
the internal flow of high-density clumps is laminar (Gammie
2001). However, once clumps form they may effectively
decouple from the background disk state, and thus no longer be
described by the same prescription.

2.2. Steady States and Cooling Models

We consider equilibrium solutions (here omitting the “eq”
subscripts for simplicity)

= - Wv yq x , 16ˆ ( )

r r= z , 17( ) ( )

r= ºP P z c z . 18s
2( ) ( ) ( )

The equilibrium density and pressure fields are obtained by
solving the vertical momentum equation with self-gravity,

r
+ W +

F
=

dP

dz
z

d

dz

1
0, 19z

2 ( )

p r
F

=
d

dz
G4 , 20

2

2
( )

together with thermodynamic equilibrium,

rnW + = Lq , 212
ext( ) ( )

where the first term represents viscous heating. For the viscous
problem, n ¹ 0, and we set  = 0ext to obtain a relation
between viscous heating and cooling (e.g., Equation (24)
below). However, if we wish to neglect viscosity (and the
accompanying dissipation) but include cooling, we must
invoke  ¹ 0ext to define an equilibrium state. To proceed
further, we separately describe the two cooling models
considered in this work.

2.2.1. Beta Cooling

In our beta cooling model, the energy loss per unit volume is
specified as an explicit function of the thermodynamic

variables. A prototypical example is


r

r
g

L =
-

-
T

T T

t
,

1
, 22irr

c
( )

( )
( ) ( )

where Tirr is a reference temperature field, and recall b= W-tc 1

is the cooling timescale with β a constant input parameter.
Physically, Tirr may be the floor temperature set by, for
example, stellar or background irradiation.
Beta cooling of the form Equation (22) is widely applied in

2D and 3D numerical simulations of self-gravitating disks
(Gammie 2001; Rice et al. 2005, 2011; Paardekooper 2012). In
fact, for =T 0irr the cooling function L = E tc is identical to
that originally employed by Gammie (2001). We will refer to
Equation (22) as “standard” beta cooling. It permits numerical
experiments to be carried out in a controlled manner as a
function of the cooling time β. An adiabatic disk corresponds
to b  ¥. The physical meaning of the limit b  0 depends
on Tirr, as discussed in Sections 4.1.1–4.1.2.
For standard beta cooling we assume an equilibrium

polytropic relation

⎛
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2
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where r r= =z 00 ( ) is the equilibrium mid-plane density, and
Γ is the constant polytropic index that determines the diskʼs
vertical structure. Thus Γ is only relevant to the 3D problem.
The vertical structure is first obtained from Equations (19)–
(20), then inserted into Equation (21) to infer the required
viscosity profile for thermal equilibrium. If  = 0ext ,

a
g b
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T

T
, 25irr
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where T zeq ( ) is the equilibrium temperature field. We shall
consider vertically isothermal disks with G = 1, as appropriate
for the outer parts of irradiated PPDs (Chiang & Goldreich
1997). In this case α, Teq and θ are simply constants. Note that
θ should only be interpreted as an irradiation parameter when it
is defined through Equation (25), in conjunction with adopting
Equation (22) as the cooling function.
We assume standard beta cooling in formulating the linear

problem. However, the corresponding linear problem for any
other explicit cooling function, say rL T,1( ), can be obtained
by equating its linearized form to that of Equation (22), i.e.,
setting d dL º L1. This then defines the β and θ parameters to
be used in the framework we develop later (see also
Section 3.1). We do this in Section 6 where we adopt a more
realistic beta cooling function for PPDs. In that case, θ may or
may not directly represent a physical irradiation.

2.2.2. Radiative Cooling

A more realistic treatment of cooling considers energy
transfer by radiative diffusion. Then

L =  F , 26rad· ( )

4

The Astrophysical Journal, 824:91 (15pp), 2016 June 20 Lin & Kratter



s
k r

= - F
T

T
16

3
, 27

d
rad

3
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where σ is the Stefan–Boltzmann constant and kd is the (dust)
opacity. We adopt

k k= T , 28d d
b

0 ( )

and take the constant index b=2 as appropriate for the cold
outer regions of a PPD with ISM-like dust grains (Bell &
Lin 1994), but retain the general notation b to keep track of the
opacity.

In this case, we specify a constant viscosity coefficient α and
solve Equations (19)–(21), together with Equations (26)–(27),
as a fourth order system of ordinary differential equations to
obtain equilibrium profiles P z( ), T z( ), and hence r z( ).

While radiative cooling is arguably more realistic than beta
cooling, it generally implies a vertically non-isothermal
equilibrium disk, and increases the order of the linearized
equations. It formally applies to optically thick disks, but it is
possible to modify the flux function to account for optically
thin disks (Levermore & Pomraning 1981). However, this
complication is beyond the scope of this work.

3. LINEAR PROBLEM

We consider infinitesimal axisymmetric Eulerian perturba-
tions of the form

dr dr= +
~

z ikx stexp , 29( ) ( ) ( )

and equivalent form for other variables. Here, k is an input real
horizontal wavenumber and s is a (generally) complex growth
rate. For simplicity, hereafter we drop the tilde.

The linearized continuity, momentum and energy equations
are
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where ¢ denotes d/dz. The perturbed viscous forces are
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and the perturbed viscous heating is given by
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In Equation (35), the 3D self-gravity parameter is

p r
º
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413D
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(Mamatsashvili & Rice 2010). The linearized cooling functions
dL are given below. Equations (30)–(35), supplemented with
appropriate boundary conditions, constitutes an eigenvalue
problem for the growth rate s.

3.1. Linearized Beta Cooling

For the standard beta cooling prescription, linearizing
Equation (22) gives

⎛
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, 42s
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where we have used d d dr r= -T T P P from the ideal
gas law.
Note that any beta cooling function can be linearized in the

form of Equation (42) with appropriate definitions of tc and θ
(see Section 6.2 for an example). For the stability problem we
may simply regard θ as a parameter for the density-dependence
of any generic beta cooling function. If we specifically consider
standard beta cooling, then θ also represents physical
irradiation.

3.2. Linearized Radiative Cooling

Linearizing Equations (26)–(27) with the temperature-
dependent opacity law in Equation (28) gives
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T
T b T T T

16

3

16

3
3 ln .

43

d

d

3

2
2

3
( )( )

( )

Since Equation (43) contains vertical derivatives of the
perturbations, it is not generally possible to map radiative
cooling to the beta cooling prescription, except for special
problems (e.g., Lin & Youdin 2015).
We now consider the gravitational stability of two and three

dimensional disks in the presence of non-ideal physics: cooling
and viscosity.
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4. TWO-DIMENSIONAL DISKS WITH BETA COOLING

We begin in the 2D limit with standard beta cooling to
facilitate comparison with previous studies. The disk material is
assumed to be confined to the mid-plane, and d =v 0z . We
make the replacement r  S, re-interpret P as the vertically
integrated pressure, and set G = 1. The gravitational potential
perturbation remains 3D and its mid-plane value is given by

d
p

dF = = - Sz
G

k
0

2
44( )

∣ ∣
( )

(Shu 1970).
The linearized equations yield an algebraic dispersion

relation =s s k( ). We write this in terms of the dimensionless
growth rate = WS s and wavenumber = = WK kH kcs0 as

º - =f S K AD BC, 0, 45( ) ( )

where the functions A B C D, , , are given in Appendix A. We
use this generalized dispersion relation to investigate GI driven
by cooling in Section 4.1; and GI driven by viscosity in
Section 4.2.

4.1. Inviscid Limit

We first simplify the problem by setting a a= = 0b . This
eliminates viscous heating and forces in the linearized problem,
allowing us to quantify the sole effect of cooling on the
perturbations. We emphasize that destabilization is independent
of the effect of decreasing temperature on the instantaneous
value of the classic-Q. A time-independent heat source should
be invoked to balance the imposed cooling to allow an
equilibrium to be defined ( ¹ 0ext ).

For example, we could assume that the viscosity only
provides a background heating and does not play an active role
in the perturbed state. This is in fact done implicitly in the
literature when discussing fragmentation of cooling, self-
gravitating disk simulations (Gammie 2001). There, the effect
of the ambient gravito-turbulent viscosity on the forming-
clump is neglected, as one only compares adiabatic heating and
the imposed cooling. This comparison is encapsulated in the
generalized dispersion relation below.

Equation (45) becomes

⎛
⎝⎜

⎞
⎠⎟

q bg
b

= - - -
+
+

S
K

Q
q

S

S
K

2
2 2

1
, 462 2∣ ∣ ( ) ( )

similar to the classic dispersion relation (Equation (2)), which
may be obtained by taking the limit b  ¥S∣ ∣ . The first term
on the right-hand side represents destabilization by self-gravity;
the second and third terms represent stabilization by rotation
and pressure, respectively. The imposed cooling/irradiation
only affects the pressure response.

Equation (46) is a cubic equation in S. The Routh–Hurwitz
criteria imply that stability is ensured if

g q
q

> >
-

Q
q

and
1

2 2
47

( )
( )

are both satisfied. A third criterion, g- >q Q2 2 12( ) , is
formally required, but this is implied by Equation (47). Notice
these conditions do not actually depend on the cooling time. At
fixed Q, the second stability condition eventually fails for

decreasing θ, i.e., if perturbations are allowed to cool to
sufficiently low temperatures.
If only real growth rates are considered, then violating the

second condition in Equation (47) alone is sufficient for
instability. In that case the wavenumbers satisfying

q - + - <K
Q

K q
2

2 2 0 482 ∣ ∣ ( ) ( )

are unstable. The range of unstable wavenumbers increases
with decreasing irradiation θ. For q  1 this range is

  q- q Q K Q2 2( ) ∣ ∣ . Without irradiation there is no upper
limit to unstable wavenumbers, which could have implications
for numerical simulations probing large wavenumbers and
small scales at high resolution (see Section 7.1).
Consider the most unstable wavenumber *K∣ ∣ at which

¶ ¶ =S K 0∣ ∣ and *=S S . By differentiating Equation (46), we
obtain

*
*

*

b
q gb

=
+
+

K
S

Q S

1
. 49∣ ∣

( )
( )

Inserting this into Equation (46), we find the maximum
growth rate satisfies

*
*

*

b
q bg

=
+
+

- -S
S

Q S
q

1
2 2 . 502

2 ( )
( ) ( )

Equations (49)—(50) imply * *¶ ¶ <b bK S, 0∣ ∣ for g q> . Then
as cooling becomes more rapid, the maximum growth rate
increases, and the most unstable wavelength decreases.
For * S 1∣ ∣ , Equation (50) gives the simple solution

*b
q

g
- -

- -
S

q Q

q Q

1 2 2

2 2 1
. 51

2

2

( )
( )

( )

Thus *S 0 as b  ¥, but growth rates are never zero for
any finite β. That is, the disk can be formally unstable for
arbitrarily long cooling times.
Figure 1 shows growth rates in a =Q 1.7 disk as a function

of the cooling time β for two irradiation levels q = 0.1, 0.33.
The vertical lines mark characteristic cooling times beyond
which the growth timescale is long compared to the dynamical
time. Increasing irradiation stabilizes the disk, and faster
cooling is required to achieve the same growth rate as in a disk
with weaker irradiation.

Figure 1. Growth rates for the 2D inviscid problem as a function of the cooling
time β for two irradiation levels: q = 0.1 (black) and q = 0.33 (orange). For
each case the vertical dashed–dotted lines mark the cooling times beyond
which growth rates are longer than 10 orbits.

6

The Astrophysical Journal, 824:91 (15pp), 2016 June 20 Lin & Kratter



Next, we consider the two limiting cases: q = 0, so
perturbations are cooled toward zero temperature (typically
employed in numerical simulations, e.g., Gammie 2001); and
q = 1, where the equilibrium disk temperature equals the
irradiation temperature.

4.1.1. q = 0

For β-cooling with q = 0, the disk is unconditionally
unstable for finite Q, although instability occurs on smaller
scales as Q increases. The b  0 limit corresponds to a
pressureless disk (not merely isothermal).

Let us consider a disk with

g
=

-
ºQ

q
Q

1

2 2
, 52crit

( )
( )

which is the condition for marginal stability in an adiabatic
disk. How does finite cooling destabilize the disk? Inserting
Equation (52) into Equation (50) with q = 0, we find

* g b
=S

Q

1
. 533

crit
2

( )

The maximum growth rate, * bµ -S 1 3, smoothly increases
with decreasing β. Notice for b > 1 this growth rate is faster
than the imposed cooling rate b W-1 .

We can define a characteristic cooling time *b as that which
removes pressure support against self-gravity over the natural
lengthscale in the problem, the scale-height H. We thus set

* =K 1∣ ∣ and find, for the Keplerian disk,

*b g
=

-
1

1
. 54

3 2( )
( )

This equation gives similar values of the cooling times below
which numerical simulations show dynamical disk fragmenta-
tion (Gammie 2001; Rice et al. 2005, 2011). These simulations
employ the same beta cooling prescription with q = 0, and
determine the fragmentation boundary, bc, as a function of the
adiabatic index γ. Table 1 shows agreement between *b and bc.
The match is remarkable, especially with the global 3D
simulations of Rice et al. (2005), since Equation (54) is derived
for 2D disks in the local limit.

4.1.2. q = 1

Standard beta cooling with q = 1 corresponds to “thermal
relaxation”: the temperature is restored to its initial value over
the cooling time (Lin & Youdin 2015; Mohandas &
Pessah 2015). In this case no additional heat source need be
invoked to define an inviscid steady state. From Equation (47),
the instability condition is <Q 1. This is the same as the
classic Toomre condition for an isothermal disk (which may be
obtained from Equation (46) by taking b S 0∣ ∣ ). In this

respect, a fully irradiated disk, in which the equilibrium
temperature is set externally, behaves isothermally regardless
of the cooling time (Gammie 2001; Johnson & Gammie 2003).

4.2. Viscous Disk

We now consider a viscous disk with parameters
m l= - =1, 0 in our adopted viscosity law, Equation (15).
In the 2D case this implies nS is constant. We check in
Appendix B that our dispersion relation reduces to previous
results for viscous GI in the isothermal limit (by tak-
ing b g ¥ =S and 1∣ ∣ ).
It is useful to consider several limiting cases. To see the

effect of cooling and irradiation, we simplify the dispersion
relation, Equation (45), by assuming b S 1∣ ∣ . Then for

K 0∣ ∣ we find

⎛
⎝⎜

⎞
⎠⎟

a
q

-
-S

K

q

K

Q
K

2 2

2
, 55

2
2

( )
∣ ∣ ( )

which coincides with Gammieʼs Equation (18) for vanishing
wavenumber. For  ¥K∣ ∣ we find

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠q a a gb- + +
-

S
Q K

2 4

3
. 56b

1

∣ ∣
( )

For q  1 a rough measure of the maximum growth rate can be
obtained by equating Equations (55) and (56).5 This exercise
yields

*
a a a gb q

a a gb
+ + - -

+ + -
S

Q q

Q q

6 4 3 3 3 2

4 3 3 2
.

57

b

b

3 4 1 4 1 4

1 4

[ ( )] ( )
( )( )

( )

To compute growth rates numerically, we consider a model
with g = 1.4, a = 0b and a a b= ( ) given by thermal
equilibrium (Equation (24)). Furthermore, we relate the
strength of self-gravity and viscosity by

a
=Q

Q
, 58crit ( )

to mimic a gravito-turbulent basic state, where one might
expect the dimensionless stress a ~ -Q 2 (Lin & Pringle 1987).
Figure 2 shows growth rates as a function of the

wavenumber obtained from the dispersion relation Equa-
tion (45). The limiting behavior for small/large K are well-
captured by Equations (55) and (56). Comparing the two panels
shows that increasing the irradiation level (θ) suppresses small-
scale perturbations.
Figure 3 shows the maximum growth rate (top panel) and the

corresponding wavenumber (bottom panel) as a function of the
cooling time β for q = 0. There is good agreement between
numerical growth rates and Equation (57) for b 1.
Equation (57) gives the limiting behavior for this case as

⎧⎨⎩*
a b b b a
a b a

µ
µ

=

- - -

- -




S
Q

Q

,

const. ,
59

1 4 3 4 1 3 2

1 2 1
( )

where we have applied Equations (24) and (58). The disk is
unstable for all β, but growth timescales are long (>10 orbits)

Table 1
Characteristic Cooling Times as a Function of γ

γ Equation (54), *b Simulation, bc Reference

7/5 12.75 12–13 Rice et al. (2005)
1.6 7.33 8 Rice et al. (2011)
5/3 6.37 6–7 Rice et al. (2005)
2 3.75 3 Gammie (2001)

5 If θ is not small and/or Q is large then one may just use Equation (55) to
maximize S over K, see the q b= =0.3, 100 curve in the bottom panel of
Figure 2.
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for b 20. This region is marked by the vertical dashed–
dotted line in Figure 3. The optimum wavenumber decreases
with the cooling time for b O 1( ) because larger scales are

more resistant to the associated increase in viscous damping.
This is evident from the dispersion relation in the large
wavenumber limit, Equation (56), showing increasing viscosity
weakens small-scale modes.
Numerical simulations of gravito-turbulent disks show there

is a maximum α (∼0.06) that can be sustained before
fragmentation (Rice et al. 2005). We can interpret this result
in our linear framework. Suppose it is possible to balance rapid
cooling ( b 1) by generating a large gravito-turbulent heating
rate ( a 1) through a small Q (second case in Equation (59)).
Figure 3 shows that such a disk would be dynamically unstable
with growth rate = Ws O ( ). This is due to the direct effect of
viscous stress promoting instability, rather than cooling. Thus,
we do not expect rapidly cooled, and hence highly turbulent,
self-gravitating disks to persist beyond dynamical timescales.
We might interpret fragmentation as an instability of the highly
viscous state (see Section 1.4). This is consistent with previous
numerical simulations performed by Lodato & Rice (2005).

5. THREE-DIMENSIONAL DISKS WITH BETA COOLING

We confirm the above results in 3D disks with vertical
structure. Accounting for the third dimension will weaken
gravitational instabilities because the disk mass is spread across
some vertical extent. It is possible to incorporate this effect in
the previous 2D framework, but doing so introduces an
additional “softening” parameter Hsg as discussed in
Appendix C. It is more direct to solve the 3D eigenvalue
problem to avoid such uncertainties. Our numerical approach is
outlined in Appendix D.
In the following examples we consider a vertically

isothermal disk (G = 1 in Equation (23)). Then in the viscous
case α is vertically constant (Equation (24)). We consider only
even modes about the mid-plane, and apply a numerical disk
surface at =z zmax such that r r=z 0.05max 0( ) .

5.1. Inviscid 3D Disk

We consider a 3D inviscid disk with g = 1.4, =Q 0.713D ,
and q = 0. The 3D gravity parameter Q3D is defined by
Equation (41). For such a disk, the corresponding Toomre
parameter =Q Q2 crit. Recall Qcrit, defined by Equation (52), is
the Toomre parameter value such that the 2D disk would be
marginally stable in the absence of cooling.
Figure 4 shows growth rates and the most unstable

wavenumbers obtained for this model. We also plot 2D results
with the 3D correction as described in Appendix C. The
(empirically) chosen value of =H H0.64sg results in a close
match between 2D and 3D growth rates, but the most unstable
wavenumber in 3D is somewhat smaller. This offset reflects
self-gravity being weakened in the vertical direction: a larger
horizontal scale is required to achieve the same strength of self-
gravity as the 2D case. Similarly, choosing =H H0.53sg
matches the optimum wavenumbers, but growth rates are over-
estimated in 2D.

5.2. Viscous 3D Disk

For the 3D viscous problem we use the same set up as that in
2D (Section 4.2), but with

a
=Q

Q
, 603D

3D,crit ( )

Figure 2. Growth rates for the 2D viscous problem as a function of the radial
wavenumber, k, for a range of cooling times, β. The dashed and dotted lines
correspond to asymptotic behaviors for small and large k, respectively,
computed from Equations (55) and (56). Top: without a floor temperature
( =T 0irr ); bottom: with a floor temperature Tirr set to 30% of the equilibrium
temperature.

Figure 3. Growth rates (top) at the optimal wavenumber (bottom) for viscous
GI as a function of cooling time for the case shown in the top panel of Figure 2.
Black curves computed from the dispersion relation (Equation (45)), and the
orange curves are estimates based on Equations (55)–(56). The dashed line
marks the region with a > 1, and the dashed–dotted line marks the region
where growth timescales exceed the dynamical time.
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where Q 0.363D,crit is the 3D equivalent to the 2D critical
value, Qcrit. Note that the background vertical structure now
varies with α through Equation (60), which in turn depends on
the cooling time through thermal equilibrium (Equation (24)).

Figure 5 shows growth rates, maximized over k, as a
function of the cooling time β. We also plot 2D results with 3D
corrections. Softening the self-gravity in 2D captures the
correct qualitative behavior of the full 3D case. For b 1
choosing =H H0.8sg produces a good match. However, it is
clear that a single, constant value of Hsg cannot re-produce 3D
growth rates for all β. This suggests that the exact value of Hsg

is problem-dependent, although taking ~H O Hsg ( ) should
give the correct 3D growth rate within a factor of two.

Figure 6 shows the magnitude of the vertical velocity dvz∣ ∣
scaled by the total horizontal velocity for b = 1, 10 and 100.
Vertical speeds are sub-dominant at 30% of the total
horizontal speeds. These vertical velocities are associated with
viscous GI, and should not be compared with those associated
with the underlying gravito-turbulence (e.g., Shi &
Chiang 2014). Vertical velocities are formally neglected in
our framework when defining the basic state (Section 2.2).

6. APPLICATION TO PPDs

We now apply our linear framework to assess the stability of
PPDs. We consider the gravito-turbulent disk models recently
developed by Rafikov (2015, hereafter R15). This 2D,
Keplerian disk orbits a Solar mass star and is defined by the
following parameters,

1. Ṁ , the global radial mass accretion rate;
2. Q0, the value of the 2D Toomre parameter where the disk

is gravito-turbulent;
3. Tirr, the irradiation temperature;

4. am, the dimensionless viscosity associated with other
sources of turbulence, such as magneto-rotational
instabilities (MRI, see also Sections 1.2 and 7.2).

These properties serve as inputs for calculating thermal
equilibrium, and mass and angular momentum conservation.
Together with an opacity law, they allow us to construct a
global disk model with surface density S R( ) and temperature
T R( ) where R is the global cylindrical radius from the star.
(See R15, for details.) These profiles give Q R( ), required for
input into our linear framework. We derive other dimensionless
parameters below.
Although our disk is global in extent, here we consider the

local stability at each radius. We are thus neglecting any global
instabilities (Adams et al. 1989; Lodato & Rice 2005; Kratter
et al. 2010) as well as any evolution of the disk properties in
response to GI.

6.1. Effective α

In a steady, viscously accreting Keplerian disk with constant
Ṁ we have, approximately, n pS = M 3˙ . Hence

a
p

=
W

S
M R

c T R3
, 61

s
2

˙ ( )
( ) ( )

( )

Figure 4. Growth rates (top) and optimal wavenumber (bottom) obtained from
the inviscid 3D eigenvalue problem (solid line). Asterisks and diamonds are
corresponding values from the 2D dispersion relation (Equation (45)) but with
a softened gravity as described in Appendix C.

Figure 5. Growth rates from the viscous 3D eigenvalue problem (black solid
line). Asterisks and diamonds are obtained from the 2D dispersion relation
(Equation (45)) with softened gravity as described in Appendix C.

Figure 6. Magnitude of vertical velocities, normalized by the magnitude of the
total horizontal velocity, of the viscous GI in Figure 5, for three cooling times:
b = 1, 10, and 100.
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which sets the viscosity coefficient to be used at each radius.
Note that the disk profiles employed here give constant Ṁ
rather than constant α.

6.2. PPD Beta Cooling

Energy loss in R15 is given by

s
t

L = -
f

T T
2

624
irr
4

( )
( ) ( )

per unit area, where

t t
t

= +f
1

, 63( ) ( )

and

t k= ST 64d ( ) ( )

is the optical depth. Recall Equation (28) is our opacity model
where k µ Td

b with b=2. Equation (63) accounts for cooling
in the optically thin (τ=1) and optically thick (t  1) regimes.

Note that Equation (62) falls within our definition of a beta
cooling prescription, because it is an explicit function of the
thermodynamic states. However, we formulated the linear
problem with the standard beta cooling function given by
Equation (22), which has a different (less realistic) dependence
on disk temperature. In order to adapt the existing framework
to the above PPD cooling function, we need to identify the
equivalent β and θ parameters that are required for the
linearized equations (see Section 3.1).

Linearizing Equation (62) gives

⎛
⎝⎜

⎞
⎠⎟g

d s g
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d d
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S
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S S
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, 65

s
s

4
1

2
2

1

2( ) ( )
( )

( )

where

t t= - ´C T b g T, 4 , , 661( ) ( ) ( )
t t= + - ´C T b g T, 4 1 , , 672 ( ) ( ) ( ) ( )
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Comparing Equation (65) with the linearized form of the
standard cooling function, Equation (42), we identify

b
t

s g
=

SW
-

f c

C T2 1
, 69s

2

1
4

( )
( )

( )

q =
C

C
, 702

1
( )

to be used in the 2D dispersion relation (Equation (45)).
Equation (69) represents a physical cooling time for the
perturbations, and is consistent with previous definitions
within factors of order unity (e.g., Kratter et al. 2010, their
Equation (2)).

Equation (70) shows that θ is related to the true irradiation
temperature Tirr through the function g given by Equation (68),
and is therefore a only a weak function of the irradiation
temperature. More specifically q = O 1( ) for all <T Tirr , and
for our adopted opacity law, Equation (28),

q =
-
-

g

g

4

4 2
.

Thus for =T 0irr we have q< <5 6 3 2 by considering
t  ¥0, . However, for =T Tirr we have q = 1, as expected
intuitively.

6.3. Inviscid Stability Condition

With our new linearized cooling function in hand, from the
discussion in Section 4.1 and by applying Equation (47), we
conclude that without viscous effects the disk is stable
everywhere if

g > >Q
3

2
and

6

5
71( )

are both satisfied.
PPDs become irradiation-dominated at large distances from

the star, where T Tirr and q  1 (Chiang & Goldreich 1997;
D’Alessio et al. 1997; Kratter & Murray-Clay 2011). Then
Equation (71) relaxes to g >Q, 1 in the outer disk. The
condition on γ is then guaranteed. On the other hand, numerical
simulations of gravito-turbulence show that  Q1 2
(Gammie 2001; Rice et al. 2011), and the second inequality
is generally satisfied. Taken together, this suggests that in the
outer regions of a realistic PPD, cooling may not be the primary
cause for a secondary instability of a gravito-turbulent disk,
leading to fragmentation. This leaves viscous GI as the only
possible culprit within our framework, as we illustrate below.

6.4. Example 2D Calculation

We relax the inviscid assumption and consider a fiducial disk
model with = - -M M10 yr6 1˙ ☉ , =Q 1.50 , =T 10 Kirr , and
a = -10m

3. Such a high accretion rate is consistent with those
expected for young protostellar disks (Shu 1977; Enoch
et al. 2009). Similarly, 10 K is a conservatively low back-
ground irradiation level consistent with cloud temperatures in
star forming regions (Plume et al. 1997; Johnstone et al. 2001).
Stellar irradiation will typically elevate Tirr in addition to adding
a radial dependence (Kratter et al. 2008) We adopt the opacity
scale k = ´ - - -5 10 cm g Kd0

4 2 1 2 as in R15. We use g = 1.6,
approximately applicable to an ideal molecular gas at low
temperatures This choice of γ satisfies the global inviscid
stability condition (Equation (71)). Figure 7 shows the
equilibrium disk profile in terms of Q, α, β, and θ. These
profiles serve as input to the 2D dispersion relation (Equa-
tion (45), Equations (74)–(78).
Figure 8 shows growth timescales and optimum wavenum-

bers for viscous GI in this fiducial model. For comparison we
also plot a case with lower accretion rate, = - -M M10 yr ;7 1˙ ☉
and analytic estimates based on Equations (55) (instead of
Equation (57) since here q ~ 1) which gives the optimum
wavenumber and growth rates as

q
a

q
= =K

Q
S

Q

3

2
,

27

16
. 72

3 4
∣ ∣ ( )

These are similar to the isothermal results of Sterzik et al.
(1995, their Equations (19) and (21), respectively), and
identical if one takes q = 1.
The most unstable wavelength is a few times the disk

thickness. So long as H R, this result is consistent with our
use of the local approximation. For our fiducial disk,

~H R 0.07 around ~R 100 au, and <H R 0.25 throughout
the disk. The increase in K∣ ∣ from ~10 au to ~20 au is due to
the decrease in Q, while that from~60 au to~100 au occurs as
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the disk transitions from the optically thick to optically thin
regime. The mismatch between the numerical and analytic
solutions at large distances is expected since the above
expressions assume K 1∣ ∣ . Nevertheless the analytic esti-
mates reproduce qualitatively correct behavior.

The fiducial disk is subject to viscous GI on dynamical
timescales (10 orbits) for R 60 au. We note this transition
radius is also implied by Equation (16) in Kratter et al. (2010).
Coincidentally, beyond this radius a 0.1 (and Wt 3c ),
which is often quoted as a condition for disk fragmentation
(e.g., R15). Thus viscous GI may be responsible for the
transition between gravito-turbulence and fragmentation due to
the removal of rotational support by viscous (turbulent)
stresses.

On the other hand, the lower Ṁ model also attain  W-t 3c
1

beyond ∼60 au, but a 0.03 everywhere. Applying empirical
cooling conditions for fragmentation may then lead to contra-
diction. Instead, if viscosity is the physical cause for
fragmentation, then our result suggest the lower Ṁ disk should
not fragment (at least much less likely than our fiducial case)
because the instability cannot develop on orbital timescales.

6.5. 3D PPD with Radiative Diffusion

We briefly consider 3D PPDs with explicit radiative
diffusion (Section 2.2.2). Given the a R( ) and Q R( ) profiles

obtained from the 2D model above, at each radius R we obtain
the vertical structure from Equations (19)–(21), with Equa-
tions (26)–(27) for the radiative flux. We then solve the 3D
eigenvalue problem as in Section 5, with the additional
boundary condition that the disk surface temperature is fixed,
d =T z 0max( ) . We use the fiducial disk model as in Section 6.4
but with =T 0irr , since our simple radiative diffusion treatment
does not include irradiation (Section 2.2.2). We use a slightly
smaller vertical domain with r r=z 0.1max 0( ) .
Figure 9 shows the growth rates and most unstable

wavenumber for ÎR 10, 100[ ] au; along with the correspond-
ing 2D results matched with softened self-gravity. There is
good agreement for R 60 au where the disk is optically thick
(τ  1) and thus both models apply. However, beyond 60 au
where the disk becomes optically thin, radiative diffusion (the
3D curve) is not valid and under-estimates the growth rates.
Nevertheless, the transition radius of ∼60 au, beyond which
growth timescales become dynamical, can be correctly
calculated within the 2D framework.

7. SUMMARY AND DISCUSSION

In this paper, we develop the linear theory of cooling,
irradiated, and viscous accretion disks in order to understand
GI in realistic PPDs. We use a Navier–Stokes viscosity to
mimic the effects of turbulent angular momentum transport.
This viscosity provides a background heating to balance the
imposed cooling, and may also act on linear perturbations. We
suggest that disk fragmentation observed in numerical simula-
tions can be understood as the eventual outcome of secondary

Figure 7. Equilibrium profile obtained from the disk model developed by
Rafikov (2015), with parameters = - -M M10 yr6 1˙ ☉ , =Q 1.50 , =T 10 Kirr ,
and a = -10m

3.

Figure 8. Black lines show growth timescales (top) of the most unstable
wavenumber (bottom) for viscous, self-gravitational modes in the 2D PPD
model shown in Figure 7. Blue curves are for the same disk model but with a
lower accretion rate. Solid curves are obtained numerically from Equation (45),
and dotted curves are analytic results based on Equation (55). For both
accretion rates the cooling time  W3 beyond the vertical dashed line, but for
the = - -M M10 yr6 1˙ ☉ disk a > 0.1 beyond this radius, while a 0.03
throughout the = - -M M10 yr7 1˙ ☉ disk.
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instabilities of a gravito-turbulent base state, driven by cooling
and/or viscosity.

Previous work has focused on the impact of viscosity and
cooling on the equilibrium temperature and surface density of
an accretion disk, but merely used this to calculate the classic
Toomre Q, thereby assess stability. We demonstrate by
explicitly including these effects into the dispersion relation
that they can drive secondary instabilities. While viscosity and
cooling can be related through thermal balance, they
independently enhance growth rates: cooling reduces thermal
stabilization; and viscous forces can compromise rotational
stabilization. This provides a physical explanation as to why
rapidly cooled, gravito-turbulent disks cannot exist. Moreover,
we discuss below how these models may lend support to the
varied behavior observed in numerical simulations.

The effect of cooling and irradiation on GI is quantified by
the dispersion relation Equation (46). We find sufficient
conditions for stability which depends on the irradiation level
(Equation (47)) but is independent of the cooling time. This
means that long cooling times can still formally lead to
instability. However, growth timescales may be uninterestingly
long for cooling times Wt O 10c ( ). Because cooling affects
pressure support, GI driven by cooling occur on small
scales, kH O 1( ).

We generalize the “viscous GI,” previously studied in
isothermal disks (Lynden-Bell & Pringle 1974; Willerding
1992; Gammie 1996), to include cooling, viscous heating and
irradiation. We consider a disk with viscosity and self-gravity
inversely related (a µ -Q 2) to model a gravito-turbulent
background, and find viscous GI occurs on orbital timescales
for a 0.1. This is consistent with the notion of a maximum
stress sustainable by gravito-turbulence established by numer-
ical simulations (Rice et al. 2005). Because viscosity affects
rotational support, viscous GI occurs on large scales,

kH O 1( ). Furthermore, irradiation preferentially stabilizes
small-scale perturbations.
We apply our linear framework to PPDs with realistic

models for cooling and gravito-turbulence. We show that with
a physically motivated cooling model for PPDs, cooling alone
does not lead to gravitational instabilities. This is due to
stabilization by an effective “irradiation” associated with the
density-dependence of the PPD cooling function as it appears
in the stability problem, which is present even if there is no
physical irradiation. This captures the fact that density
enhancements impede cooling.
Instead, viscous GI occur on dynamical timescales in a PPD

for R 60 au because a 0.1 there. This corresponds to a
Toomre Q 1.5 and a cooling time  W-t 3c

1. These are
coincident with empirical conditions cited in the literature to
determine disk fragmentation (e.g., Rafikov 2015). Here, we
attribute a physical cause for the fragmentation of realistic
PPDs: gravito-turbulent PPDs fragment when turbulent stresses
are large enough to further destabilize the disk against self-
gravity.

7.1. Relation to Numerical Simulations

Our results may help understand some numerical simulations
concerning disk fragmentation. Table 1 shows a close match
between the characteristic cooling time for cooling-driven GI
(Equation (54)) and that for disk fragmentation observed in
simulations (Gammie 2001; Rice et al. 2005, 2011). This
suggests that, at least for those simulations, fragmentation is
physically due to the removal of thermal stabilization by
cooling on radial lengthscales of the disk thickness. In this
interpretation, gravito-turbulence only provides a background
heating. Our characteristic cooling time corresponds to a
dimensionless background viscosity as defined in the above
studies6

⎧
⎨⎪
⎩⎪

a
g

g g

g
g
g

=
-
+

=
=
=

4

9

1

1

0.062 7 5,
0.063 5 3,
0.059 2.

73
1 2( )

( )
( )

This a ~ 0.06 is roughly constant, consistent with Rice
et al. (2005).
More recent simulations have raised the issue of numerical

convergence. Meru & Bate (2011) found that better resolved
disks fragmented at longer cooling times. Follow-up studies
attributed at least some of this effect to decreasing numerical
viscous heating at higher resolution, which helps fragmentation
(Lodato & Clarke 2011; Meru & Bate 2012). We can expect
this if numerical viscosity contributes to an effective irradia-
tion, because then perturbations can cool to lower temperatures
with increasing resolution, see Figure 1. In global simulations,
non-convergence has also been attributed to initial conditions
that lead to internal edges (Paardekooper et al. 2011), but this
cannot be modeled in our local setup. Rice et al. (2012) point
out that the standard implementation of beta cooling in
smoothed-particle hydrodynamics (SPH) applies cooling on
scales well-below the SPH smoothing lengths, and that this
inconsistency may contribute to non-convergence.
However, Paardekooper (2012) also found in local 2D grid-

based simulations that fragmentation can occur for slowly
cooled disks with W t O 1c ( ), but that this requires

Figure 9. Growth timescales (top) of the most unstable wavenumber (bottom)
for viscous GI in a 3D PPD with radiative diffusion (black lines). Asterisks are
corresponding results obtained from the corresponding 2D problem with
softened gravity. Beyond the vertical dashed line a > 0.1, which corresponds
to cooling times  Wt 4c .

6 This differs from our definition of α by a factor of g-1.

12

The Astrophysical Journal, 824:91 (15pp), 2016 June 20 Lin & Kratter



simulations to run for significantly longer than dynamical
timescales. This is consistent with our finding that for either
cooling-driven or viscous GI, there is no critical cooling rate/
viscosity below which the disk is formally stable. Instead,
growth rates smoothly decrease with increasing tc (decreasing
α), implying that instabilities, and hence fragmentation, simply
take longer to develop for slowly cooled disks. However, to
properly consider long timescales, it may be necessary to
account for secular evolution in the global disk.

Here, we highlight that most numerical experiments,
including those above, employ the standard beta cooling
function, Equation (22), without a physical floor temperature.
We show in Section 4.1 (see also Section 1.1) that this implies
cooling-driven GI can occur at any sufficiently small scale.
Therefore as the numerical resolution increases, simulations
can access a wider range of unstable scales. Although small-
scale modes have weaker growth rates, they can become
important over long timescales. In this respect, it is perhaps not
surprising to find non-convergence with increasing resolution
and/or integration times. On the other hand, the convergence
issue may be less serious in 3D since small-scale modes are
more stable in 3D than in 2D (Appendix C).

We suggest having a physical floor temperature in the
standard beta cooling prescription is necessary for numerical
convergence. This limits the relevant scales to a finite range.
Furthermore, without a floor temperature, standard beta cooling
is a function of the pressure/energy density field only. There
may be some inconsistency in applying results obtained from
this to actual PPDs where cooling depends on two thermo-
dynamic states (e.g., pressure and temperature). A floor
temperature permits a mapping between standard beta cooling
and PPD cooling (Section 6.2). Moreover, the standard beta
cooling does not account for optical depth effects, which force
the mid-plane and high density perturbations to cool more
slowly.

A temperature floor may be a necessary, but not sufficient
condition for numerical convergence. Baehr & Klahr (2015)
included a floor temperature in their local 2D simulations but
still find that at fixed cooling rates, disks eventually fragment
with sufficient spatial resolution. In light of our results on
viscous GI, we suggest another possible contribution to non-
convergence: high resolution enables small-scale turbulent
angular momentum transport to aid clump formation via the
removal of rotational support. (See also Section 7.2 below.) If
clumps are only marginally resolved, simulations may not have
sufficient dynamic range for turbulent eddies to cascade down
to these scales.

We comment that although modern simulations resolve the
dominant scale associated with gravito-turbulence very well,

~kH 1 (Cossins et al. 2009), this does not necessarily imply
small-scale dynamics/thermodynamics are unimportant (espe-
cially for nonlinear evolution, Young & Clarke 2015), as is
evident from the non-converging simulations described above.
Even at very high resolution one might worry that the artificial
dissipation scale imposed by the grid/smoothing length is too
similar to the scale of fragmentation.

7.2. MHD Turbulence

We emphasize that the linear framework we have developed
does not assume a particular origin for the turbulence that is
represented by the imposed viscosity. For example, our 2D

dispersion relation, Equation (45) with Equations (74)–(78),
treats α as an independent input parameter.
Our models may thus apply to self-gravitating disks

dominated by MHD turbulence. Explicit numerical simulations
of magnetized, massive disks have been performed by Fromang
(2005). This study finds disk fragmentation with increasing
numerical resolution, and attributes this to resolving the most
unstable MRI wavelength, which enables small-scale angular
momentum removal by MHD turbulence to aid fragmentation.
This physical mechanism is represented by the viscous GI
discussed in this paper, which lends some support for the use of
a viscosity to represent turbulence.

7.3. Outstanding Issues

True disk fragmentation is a nonlinear process characterized
by clumps reaching densities that are orders of magnitude
above the ambient value. They must also survive disruption by
tidal shear and shocks (Shlosman & Begelman 1987; Young &
Clarke 2016). Clearly, our linear models cannot address
fragmentation directly. Technically, we have only demon-
strated that a gravito-turbulent state becomes dynamically
unstable, and thus should not persist, when cooling is too rapid
or when the associated viscous stresses are too large. However,
steady gravito-turbulence or fragmentation are the only possible
outcomes of cooling, self-gravitating disks in the local limit
(Gammie 2001). Thus it seems reasonable to speculate that the
non-existence of a stable gravito-turbulent state, here due to
dynamical instability, implies disk fragmentation.
Our deterministic approach cannot model “stochastic

fragmentation” (Paardekooper 2012; Hopkins & Christiansen
2013). In this interpretation, fragmentation is attributed to the
occurrence and survival of large, nonlinear density enhance-
ments, which arise from the gravito-turbulent fluctuations
simply by chance. There is insufficient evidence that gravito-
turbulence adequately samples the density power spectrum as
assumed by Hopkins & Christiansen (2013). Nevertheless, one
might consider this form of fragmentation as a secondary
instability triggered by lowering the local Toomre parameter
through a (random) increase in density.
The most important assumption in this work is modeling

turbulence as a Navier–Stokes viscosity. Furthermore, we have
chosen a particular viscosity law (see Section 2.1) to mimic the
effect of turbulence in reducing rotational support (in the sense
that it provides small-scale angular momentum transport). How
to quantitatively model the effect of gravito- or MHD
turbulence as a viscosity, especially on dynamical timescales,
should be clarified with direct numerical simulations. The
present viscosity models should then be modified accordingly.
Another possible generalization is non-axisymmetric dis-

turbances. In barotropic, inviscid disks non-axisymmetric
global GI can develop for Q somewhat larger than unity
(Adams et al. 1989; Papaloizou & Lin 1989; Papaloizou &
Savonije 1991; Laughlin et al. 1997). It would be interesting to
study how non-axisymmetric perturbations are affected by
cooling and viscosity in order to improve the link between disk
fragmentation and the stability of gravito-turbulent disks.

We thank the anonymous refereeʼs prompt report that helped
to improve the clarity of this work. We thank S. Stahler and A.
Youdin for comments during the course of this project; C.
Clarke, C. Gammie, and S.-J. Paardekooper for feedback on the

13

The Astrophysical Journal, 824:91 (15pp), 2016 June 20 Lin & Kratter



first version of this article, and G. Lodato for useful
discussions.

APPENDIX A
2D DISPERSION RELATION

The functions in Equation (45) are

⎜ ⎟⎛
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Note that these equations treat all the parameters as
independent (namely α, ab, β, θ, and Q).

APPENDIX B
2D VISCOUS GI

We obtain the dispersion relation for viscous GI described
by previous authors (Lynden-Bell & Pringle 1974; Willerding
1992; Gammie 1996) as follows. We set m l= - =1, 0 in
Equation (15) to obtain the same viscosity models. Next we
consider b  ¥S∣ ∣ , i.e., no explicit cooling on the perturba-
tions. Then the condition =AD BC implies
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2 4
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which agrees with the above studies in the isothermal limit
(g = 1; see also Schmit & Tscharnuter 1995, their Equation
(28)). The non-isothermal term gµ - 1( ) originates from
viscous dissipation, which was excluded in the aforementioned
works. Its effect is to increase the maximum wavenumber for
viscous GI.

An approximate solution for the growth rate may be obtained
for small K∣ ∣ by balancing the last two terms,

a g g
g

- + - -
- - +

S
K K Q K q q

q K Q K

2 2 2 1

2 2 2
, 80

2 2

2

[ ∣ ∣ ( )( )]
( ) ∣ ∣

( )

which coincides with Gammieʼs Equation (18) for g = 1.

APPENDIX C
3D CORRECTIONS IN 2D THEORY

The simplest way to mimic the effect of finite disk thickness
on gravitational instabilities is to weaken self-gravity by

reducing the gravitational constant

 + -G G k H1 , 81sg
1( ∣ ∣ ) ( )

or equivalently  +Q Q k H1 sg( ∣ ∣ ). This prescription, derived
by Shu (1984), is widely applied (e.g., Youdin 2011; Takahashi
& Inutsuka 2014). Here Hsg is a measure of the disk thickness.
We intuitively expect ~H Hsg , but its precise value is not
known a priori. We regard Hsg as a free parameter of the
problem.

APPENDIX D
NUMERICAL METHOD FOR THE

3D EIGENVALUE PROBLEM

We use a pseudo-spectral method to solve the set of ordinary
differential equations, Equations (30)–(35), on the domain
Îz z0, max[ ] with a parity condition at the mid-plane. We

expand d dr d d d= FU P v v, , , ,x y[ ] in even Chebyshev poly-
nomials,

å=
=

-U az T z z , 82
j

N

j j
1

2 1 max( ) ( ) ( )( )

and the vertical velocity in odd Chebyshev polynomials,

åd =
=

-v z b T z z , 83z
j

N

j j
1

2 1 max( ) ( ) ( )

where aj and bj are the spectral coefficients. The basis functions
are chosen to satisfy a reflecting boundary condition at the mid-
plane,

d¢ = =U v0 0, 0 0. 84z( ) ( ) ( )

For simplicity we apply a reflecting upper disk boundary,

d d d= ¢ = ¢ =v z v z v z 0, 85z x ymax max max( ) ( ) ( ) ( )

and the potential satisfies

d dF¢ + F =z k z 0, 86max max( ) ( ) ( )

as derived by Goldreich & Lynden-Bell (1965b) and used in
similar studies (Kim et al. 2012; Lin 2014).
We discretize the equations, including upper disk boundary

conditions, over the N positive abscissae of the extrema of
-T N2 1. This procedure converts the differential equations into a

generalized eigenvalue problem, for which we use the standard
matrix package LAPACK to solve. We use N=65.
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