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Abstract

The streaming instability (SI) is one of the most promising pathways to the formation of planetesimals from
pebbles. Understanding how this instability operates under realistic conditions expected in protoplanetary disks
(PPDs) is therefore crucial to assess the efficiency of planet formation. Contemporary models of PPDs show that
magnetic fields are key to driving gas accretion through large-scale, laminar magnetic stresses. However, the effect
of such magnetic fields on the SI has not been examined in detail. To this end, we study the stability of dusty,
magneftized gas in a protoplanetary disk. We find the SI can be enhanced by passive magnetic torques and even
persist in the absence of a global radial pressure gradient. In this case, instability is attributed to the azimuthal drift
between dust and gas, unlike the classical SI, which is driven by radial drift. This suggests that the SI can remain
effective inside dust-trapping pressure bumps in accreting disks. When a live vertical field is considered, we find
the magneto-rotational instability can be damped by dust feedback, while the classic SI can be stabilized by
magnetic perturbations. We also find that Alfvén waves can be destabilized by dust–gas drift, but this instability
requires nearly ideal conditions. We discuss the possible implications of these results for dust dynamics and
planetesimal formation in PPDs.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Hydrodynamics (1963); Planet formation
(1241); Astrophysical fluid dynamics (101); Magnetohydrodynamics (1964)

1. Introduction

The formation of 1–100 km sized planetesimals is a key stage
in the core accretion theory of planet formation (Chiang &
Youdin 2010; Johansen et al. 2014; Birnstiel et al. 2016) but is
still not well understood. Specifically, the growth of solids from
micron-sized grains through sticking is limited to millimeter to
centimeter sized pebbles, beyond which collisions result in
bouncing or fragmentation (Blum & Wurm 2008; Blum 2018).
Furthermore, gas drag can lead to a rapid inwards drift of solids
(Whipple 1972; Weidenschilling 1977), which introduces a radial-
drift barrier (Birnstiel et al. 2010, 2012).

One way to circumvent these growth barriers is the collective,
self-gravitational collapse of a particle swarm directly into
planetesimals (Goldreich & Ward 1973; Youdin & Shu 2002).
To do so, the particle swarm must attain a dust-to-gas mass density
ratio, ò, well above unity (Shi & Chiang 2013), which should be
compared to the typical value of ò∼ 0.01 in the interstellar medium
and is a reasonable expectation in protoplanetary disks (PPDs; Testi
et al. 2014), at least initially. Thus, some other mechanism is
needed to enhance the local dust-to-gas ratio.

To this end, the streaming instability (SI; Youdin & Goodman
2005; Johansen & Youdin 2007; Youdin & Johansen 2007; Bai &
Stone 2010a, 2010b; Kowalik et al. 2013; Yang & Johansen 2014;
Carrera et al. 2015; Yang et al. 2017; Li et al. 2018; Schreiber &
Klahr 2018; Flock & Mignone 2021; Li & Youdin 2021) is a
leading candidate for raising the dust-to-gas ratio in PPDs to the
point of gravitational collapse (Johansen et al. 2009b; Simon et al.
2016, 2017; Schäfer et al. 2017; Abod et al. 2019; Li et al. 2019).

The SI is a linear instability in rotating flows of dust and gas
when the two components interact through mutual drag
(Jacquet et al. 2011; Lin & Youdin 2017; Jaupart & Laibe 2020;
Pan 2020, 2021; Pan & Yu 2020; Squire & Hopkins 2020) and
is powered by their relative radial drift, which itself is usually
driven by a global radial pressure gradient that offsets the gas
from Keplerian rotation. More recently, the SI was shown to be
a member of a broader class of resonant drag instabilities
(RDIs; Squire & Hopkins 2018a, 2018b; Zhuravlev 2019) in
dusty gas, where instability arises from a resonance between
neutral waves in the gas and the relative motion between dust
and gas.
There have been several extensions to the classic SI of

Youdin & Goodman (2005), or more generally that of dust–gas
interaction, including the effect of external turbulence (Chen &
Lin 2020; Gole et al. 2020; Schäfer et al. 2020; Umurhan et al.
2020), multiple grain sizes (Schaffer et al. 2018, 2021; Benítez-
Llambay et al. 2019; Krapp et al. 2019; Paardekooper et al.
2020; McNally et al. 2021; Zhu & Yang 2021), pressure bumps
(Taki et al. 2016; Onishi & Sekiya 2017; Auffinger &
Laibe 2018; Carrera et al. 2021a, 2021b), and disk stratification
(Ishitsu et al. 2009; Lin 2021). These efforts are necessary to
determine the efficiency of the SI in realistic PPDs.
On the other hand, the influence of a magnetic field on the SI

has been less well explored, but PPDs are expected to be
magnetized, albeit subject to nonideal magneto-hydrodynamic
(MHD) effects (Lesur 2021). Early studies focused on the
impact of MHD turbulence sustained by the magneto-rotational
instability (MRI; Balbus & Hawley 1991) on dust dynamics,
including their vertical settling and radial diffusion and
migration (Fromang & Nelson 2005; Johansen & Klahr 2005;
Fromang & Papaloizou 2006; Johansen et al. 2006). Sub-
sequent simulations do find dust clumping in MHD-turbulent
disks, which has been attributed to the SI (Johansen et al. 2007;
Balsara et al. 2009; Tilley et al. 2010), weak radial diffusion in

The Astrophysical Journal, 926:14 (24pp), 2022 February 10 https://doi.org/10.3847/1538-4357/ac3bb9
© 2022. The Author(s). Published by the American Astronomical Society.

3 Both authors contributed equally to this work.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-8597-4386
https://orcid.org/0000-0002-8597-4386
https://orcid.org/0000-0002-8597-4386
https://orcid.org/0000-0003-3567-0680
https://orcid.org/0000-0003-3567-0680
https://orcid.org/0000-0003-3567-0680
mailto:mklin@asiaa.sinica.edu.tw
http://astrothesaurus.org/uat/1300
http://astrothesaurus.org/uat/1963
http://astrothesaurus.org/uat/1241
http://astrothesaurus.org/uat/1241
http://astrothesaurus.org/uat/101
http://astrothesaurus.org/uat/1964
https://doi.org/10.3847/1538-4357/ac3bb9
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac3bb9&domain=pdf&date_stamp=2022-02-08
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac3bb9&domain=pdf&date_stamp=2022-02-08
http://creativecommons.org/licenses/by/4.0/


resistive disks (Yang et al. 2018), or concentration by zonal
flows or pressure bumps induced by the MRI (Johansen et al.
2009a, 2011; Dittrich et al. 2013; Xu & Bai 2022). The latter
two effects may facilitate the SI as it requires ò 1 for
dynamical growth, although pressure bumps present a dilemma
as the classic SI does not formally operate without a radial
pressure gradient.

In addition to driving small-scale (perhaps weak) turbulence,
magnetic fields are also expected to regulate the large-scale gas
dynamics of PPDs. Modern numerical simulations often find
magnetized disk winds that drive laminar accretion (Gressel
et al. 2015; Bai 2017; Béthune et al. 2017; Wang et al. 2019;
Gressel et al. 2020). These windy PPDs are the new paradigm
for planet formation and evolution. In some of these models,
namely those including the Hall effect with the field and disk
rotation being aligned, large-scale horizontal magnetic stresses
can develop in the disk midplane, which leads to radial gas
accretion. Such inflows can strongly modify the orbital
migration of protoplanets compared to conventional, alpha-
type viscous disk models (McNally et al. 2017; Kimmig et al.
2020).

A natural question is how do planets form in these laminar,
accreting PPDs in the first place? Related to this issue is the
formation of rings or pressure bumps commonly seen in such
simulations (Béthune et al. 2016; Suriano et al.
2017, 2018, 2019; Riols & Lesur 2019; Cui & Bai 2021),
which can act as dust traps (Krapp et al. 2018; Riols et al. 2020)
and may be sites of preferential planetesimal formation, for
example through the SI. These pressure bumps may also
explain dust rings observed in bright PPDs (e.g., Andrews et al.
2018; Long et al. 2018).

In this work, we examine the basic properties of dusty-gas
dynamics in a magnetized PPD. Motivated by the aforemen-
tioned studies, we are particularly interested in the effect of a
magnetically driven accretion flow on the SI, as well as how the
MRI and SI interact, and their implications for planetesimal
formation. We find that a laminar gas accretion flow can
enhance the SI and lead to instability even without radial
pressure gradients, which suggests that pressure bumps remain
feasible sites for the SI. We also find dust loading can reduce
MRI growth rates, while magnetic perturbations can be
effective in stabilizing the classic SI. Finally, we demonstrate
a RDI unique to dusty and magnetized gas, in which Alfvén
waves are rendered unstable by dust–gas drift, although it may
have limited relevance to realistic PPDs.

This paper is organized as follows. In Section 2 we list the
basic equations for a dusty, magnetized PPD and specify the
physical setups under consideration. We describe the linear
problem in Section 3 and give an overview of analytic results,
some of which are developed in the Appendixes. We present
numerical results in Section 4. In Section 5 we verify the main
findings from our linear-stability analyses with direct integra-
tion of the dusty MHD equations. We discuss the implications
of our results to dust dynamics in PPDs in Section 6 before
summarizing in Section 7.

2. Basic Equations

We consider a three-dimensional (3D) PPD comprised of gas
and a single species of uncharged dust grains in orbit around a
central star of mass M*. Cylindrical coordinates (R, f, z) are
centered on the star. The gas component has density, pressure,

and velocity fields (ρg, P, V), respectively, and is threaded by a
magnetic field, B. We consider small grains (defined below)
and approximate the dust population as a pressureless fluid
with density and velocity fields (ρd, W), respectively. The
frictional drag between dust and gas is characterized by the
stopping time, τs.
We make several simplifications for tractable analyses. We

consider a strictly isothermal gas so that r=P Cs
2

g, where
Cs=HgΩK is a constant sound-speed. Here Hg is the pressure
scale height, W º *GM RK

3 is the Keplerian frequency, and
G is the gravitational constant. We neglect gas viscosity and
dust diffusion (Dubrulle et al. 1995) except in some
calculations for regularization and comparison purposes. As a
proxy for nonideal MHD effects, we consider ohmic resistivity
with a constant diffusion coefficient, ηO. For the dust, we
assume a constant Stokes number, St≡ τsΩK. Then the fluid
approximation applies to small grains with St= 1 (Jacquet
et al. 2011), which we assume throughout. We focus on
dynamics close to the disk midplane (z= 0) and thus neglect
the vertical component of stellar gravity, so our models are
unstratified (∂z= 0 in equilibrium). We also impose axisym-
metry from the outset (∂f≡ 0).
Under these approximations, the governing equations for the

magnetized gas are as follows:

r
r

¶

¶
+  =· ( ) ( )V

t
0, 1

g
g

r

r m t

¶
¶

+  =- W - 

+  ´ ´ + -

· ˆ

( ) ( )

( )



V
V V R

B B W V

t
R P

1

1
,

2

g

g

K
2

0 s

h
¶
¶

=  ´ ´ -  ´( ) ( )B
V B B

t
, 3O

together with ∇ ·B= 0, μ0 is the magnetic permeability, and
ò≡ ρd/ρg is the dust-to-gas ratio. The dust equations are
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¶
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2.1. Steady-state Drift with a Magnetic Field

We consider axisymmetric (∂f= 0), unstratified (∂z= 0)
basic states with vanishing vertical velocities (Vz=Wz= 0).
The vertical component of the magnetic field Bz is taken to be a
constant, which does not affect the equilibrium solutions
below. The solenoidal condition implies BR∝ R−1. Hence, we
write

= ⎛
⎝

⎞
⎠

( ) ( )B R B
R

R
, 6R R0

0

where R0 is a reference radius and BR0 is a constant. For a thin
disk we expect fW ˆV R K . Inserting this into the induction
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equation, we find

h
= - º

W
f f f( ) ( )B R B
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2
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O
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0
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0 0

where Ω0=ΩK(R0); see also McNally et al. (2017).
We next seek approximate solutions to the horizontal

velocity fields given the above field configuration. We write
f= W + ¢ˆV VR K and assume the disk is nearly Keplerian so

that ¢ W∣ ∣ V R K, and similarly for W. Neglecting terms
quadratic in the primed variables, the equilibrium equations
become

h
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where FR,f are the radial and azimuthal components of the
Lorentz force:

m r m r
º - ºf
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with BR,f given by Equations (6)–(7), and
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is a dimensionless measure of the radial gas pressure gradient.
Solving Equations (8)–(11) give
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where Δ2≡ St2+ (1+ ò)2, and

h h= +
W

( )F

R2
18R

tot
K
2

is a dimensionless measure of the total (gas plus magnetic)
radial pressure gradient. Equations (14)–(17) generalize the
standard, two-fluid steady-state drift solutions for a dusty gas
(Nakagawa et al. 1986) to include the effect of horizontal
magnetic fields in a resistive disk, where magnetic torques
drive gas accretion. See Umurhan et al. (2020) for a similar set
of equations that account for viscous gas accretion.

We remark that the above velocity fields do not produce
global steady states for arbitrary density fields. This requires
the mass fluxes r¢RVR g and r¢RWR d to be global constants,
which constrains the density profiles. We explore this in
Appendix A for the case of constant St and ò. However, small-

scale instabilities such as the SI are not expected to be sensitive
to the global density profile. Indeed, it is possible to model
them in a local disk model, in which case a strict steady state
can be obtained for constant densities, velocities, pressure
gradients, and magnetic torques, as we do below.

2.2. Dust Drift Indirectly Induced by Magnetic Fields

In the limit ò→ 0, or negligible dust feedback, we find

h¢ 
W

¢  - Wf
f ( )V

F
V R

2
, , 19R

K
tot K

so the gas rotates at a sub-Keplerian speed (assuming ηtot> 0)
and drifts inward since Ff< 0. The gas accretion rate is a
constant:
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In this limit the dust radial drift is
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Thus the inwards drift of dust is enhanced by the magnetic
torque. This is expected as the dust is partially coupled to the
inwardly accreting gas through drag. The dust, therefore, feels
the magnetic field indirectly.

2.3. Shearing Box Approximation

We study the local dynamics of the above system by
focusing on a small patch of the disk using the shearing box
framework (Goldreich & Lynden-Bell 1965). The box is
anchored at a fiducial point (R0, f0, 0) that rotates around the
star at an angular frequency of Ω0, so f0=Ω0t. Cartesian
coordinates (x, y, z) in the box correspond to the radial,
azimuthal, and vertical directions in the global disk. For a
sufficiently small box size (=R0) we can ignore curvature
effects and approximate Keplerian rotation as = - W ˆU yqxK 0
with q= 3/2. We then define v and w as the dust and gas
velocities in the shearing box relative to this linear shear flow.
The total gravitational and centrifugal force in the box
is W x̂x3 0

2 .
In terms of velocity deviations, the axisymmetric shearing

box equations read
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(e.g., Yang et al. 2018), where subscript 0 here and below
denotes evaluation at the reference radius in steady state. In
Equation (23), we include the effect of a global gas-plus-
magnetic pressure gradient through the term∝ ηtot,0 and that
from a large-scale horizontal magnetic torque through Ff0. In
the shearing box approximation these are modeled as
constant forcing terms that do not respond to the dynamics
in the box. Note that P here refers to pressure fluctuations and
is zero in equilibrium. An exact equilibrium state consists of
constant densities and velocities, with the latter given by
Equations (14)–(17) evaluated at R0. That is, = ¢( )v V R0

and = ¢( )w W R0 .

2.4. Problem Specification

We study two specific roles of magnetic fields and simplify
Equations (22)–(26) accordingly:

1. Case I. The effect of gas accretion flows induced by
large-scale, horizontal fields. Here, the magnetic field is
only included in the equilibrium disk and is neglected in
the perturbed state. We thus set the Lorentz force to
zero in Equation (23) and drop the induction equation.
This is expected to be valid for gas poorly coupled to
the field, as expected in PPDs, in which case the
magnetic field will remain effectively unperturbed. See
McNally et al. (2017) for a similar treatment.

2. Case II. The effect of a live vertical magnetic field,
which enables the MRI and other magnetic modes. A
vertical field does not modify the equilibrium from the
hydrodynamic limit. However, magnetic forces are
fully active in the perturbed state, i.e., we include
Lorentz forces and the induction equation. Note that a
live radial field cannot be included initially as it would
be sheared apart by differential rotation so no
equilibrium can be constructed. For simplicity, we also
neglect background horizontal fields, thus ηtot,0→ η0
and Ff0→ 0, and there is no magnetically induced gas
accretion.

2.5. Physical Parameters

Our magnetized, dusty disks are characterized by several
parameters, some of which are specific to Cases I and II. For
clarity, we drop the subscript 0 notation with the understanding
that all variables below are evaluated at the reference radius in
the equilibrium state.

The disk opening angle at the reference radius,

º ( )h
H

R
, 27g

g

is a measure of the disk temperature. In this work we fix
hg= 0.05. The global pressure gradient, ηtot, is typically of

( )O hg
2 and is also a measure of gas compressibility when

considering the SI (Youdin & Goodman 2005; Youdin &
Johansen 2007).

For convenience we also define the reduced pressure
gradient parameter:

h
h

º ( )
h

. 28tot

g

We take h 0 unless otherwise stated. We will consider small
values of h to explore how the SI behaves around pressure
extrema.
For the magnetic field, we define the azimuthal and vertical

Alfvén speeds:
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and the plasma beta parameters:
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to quantify the (inverse) strength of the magnetic field in Cases
I and II, respectively. We use the Elsässer numbers

h h b
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W
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f
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31z

A z

O

s

O z
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,
2 2

,

to quantify the effect of ohmic resistivity.
A given disk model is parameterized by h, St, ò, βf,z, and

Λf,z. However, for Case I the magnetic parameters only appear
in the azimuthal force, Ff, which physically represents
Maxwell stresses from the background disk. It is therefore
convenient to define the dimensionless stress

a
m b

º - =
L

f

f f
( )

B B

P

h

2
, 32M

R

0

g
2

2

so a= -fF C R2M s
2 . Our results for Case I do not depend on

values of βf and Λf separately, but only on the magnetic stress,
αM. Note that αM should not be interpreted as the viscous αSS

parameter of Shakura & Sunyaev (1973) that attempts to mimic
small-scale turbulence. Here, αM characterizes radial angular
momentum transported by large-scale, horizontal magnetic
torques, although our results are also applicable to gas
accretion driven by other means (see Section 6.1).

2.6. Radial and Azimuthal Drifts

We define a dimensionless measure of the relative radial
dust–gas drift as

z h aº
-

= -
D

+ -[ ( ) ] ( )w v

C
h

St
2 1 St . 33x

x x

s
M2 g

The first term in the square brackets of Equation (33) is usually
of O(hg). It is thus larger than the second term by a factor of

a( ) O 11

StM
for typical disk parameters. That is, radial drift is

generally attributed to radial pressure gradients.
However, near a pressure extremum, ζx can vanish as the

inwards drift due to pressure gradients is canceled out by the
magnetic torque. For h a h StM g , the magnetic torque
dominates and dust drifts outwards relative to the gas. For
hg= 0.05, St= 0.1, and αM= 0.01, the critical h is O(10−5).
Similarly, we define a dimensionless measure of the

azimuthal drift as

z h aº
-

=
D

+ +⎡
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( ) ( ) 
w v

C
h
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1

2
1 . 34y
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s
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Both pressure gradients and the magnetic torque lead to a
positive azimuthal drift. For h a h StM g , the azimuthal drift
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is attributed to the magnetic torque. For the same parameters as
above, the critical h is O(10−3), implying that as one
approaches a pressure extremum the magnetically induced
azimuthal drift dominates over that due to pressure gradients,
before the same occurs for the radial drift.

We remark that while the radial pressure gradient causes an
O(St) radial drift and an O(St2) azimuthal drift, the magnetic
torque has the opposite effect in driving an O(St) azimuthal
drift and an O(St2) radial drift. When h = 0, the azimuthal drift
is larger than the radial drift by a factor of O(St−1).

3. Linear Theory

We consider axisymmetric Eulerian perturbations for any
variable A such that

å d s + + +[ ( ) ] ( )A A A i k x k z tRe exp , 35
k k

x z
,x z

where δA is a complex amplitude; kx and kz are real radial and
vertical wavenumbers, respectively; and the complex growth
rate σ= s− iω, where s is the real growth rate and ω is the
oscillation frequency. For the linear problem, we take kx,z> 0
without loss of generality. Explicit expressions of the linearized
equations are given in Appendix B, where we also reproduce
the standard MRI and SI.

The linearized system constitutes the eigenvalue problem

s= ( )Mq q, 36

where M is the matrix representation of the right-hand side of
Equations (B1)–(B11) and q is the eigenvector of the complex
amplitudes. Note that for Case I, M is a 8× 8 matrix and

dr dr d d= [ ]q v w, , , T
g d since the induction equation is

dropped. For Case II,M is an 11× 11 matrix and q additionally
includes magnetic field perturbations. We solve Equation (36)
using standard numerical methods in MATLAB. In addition to
the physical parameters described in Section 2.5, each
calculation also depends on the wavenumbers kx,z.

3.1. Streaming Instabilities Driven by Azimuthal Drift

The classic SI of Youdin & Goodman (2005) is driven by the
radial drift between dust and gas, ζx. There also exists an
azimuthal drift, ζy, between dust and gas (Equation (34)), but
this is subdominant to the radial drift provided that magnetic
torques are weak compared to pressure gradients, which is
usually the case.

However, as discussed in Section 2.6, azimuthal drifts can
dominate over radial drifts near pressure extrema. Indeed, for
Case I and sufficiently small h, we find the SI can still operate,
but is now related to the azimuthal drift, and thereby to the
magnetically induced accretion flow. In Appendix C we present
a simplified model of this new form of SI. We find they have
growth rates

z
=

+
W ( )




s

K

1
, 37

x y

for Kz= 0, where Kx,z= kx,zHg are normalized wavenumbers.
This is distinct from the classic SI that requires Kz≠ 0 (Youdin
& Goodman 2005). This azimuthal-drift-driven SI also differs
from the RDI described below, which would necessarily
require nonaxisymmetric disturbances.

3.2. Resonant Drag Instabilities

A powerful description of instabilities driven by mutual
dust–gas drag is the RDI theory developed by Squire &
Hopkins (2018a, 2018b). This family of instabilities arise from
a resonance between waves in the gas and the relative drift
between dust and gas when ωgas(k)= k · (w− v), where ωgas is
the neutral frequency of a wave mode in the gas when there is
no dust, and k is the wavevector.
In our unstratified, axisymmetric shearing box the resonance

condition is

w = -( ) ( ) ( )k k k w v, . 38x z x x xgas

Equation (38) gives the relation between kx and kz that
maximizes growth rates. Since a variety of waves can be
supported in a gas, RDIs are generic so that dusty gas is
generally unstable. Note that the azimuthal drift (wy− vy)
cannot cause an RDI in axisymmetric disks.

3.2.1. Classic Streaming Instabilities

When ò= 1, the classic SI is an RDI in which ωgas

corresponds to an inertial wave (Squire & Hopkins 2018b),

w =
+

W ( )
k

k k
39z

x z
gas
2

2

2 2
2

(e.g., Balbus 2003). Using Equation (39) and the radial drift
given by Equation (33), the resonance condition Equation (38)
becomes

z

z
=

-
( )K

K

K1
40z

x x

x x

2
4 2

2 2

(see also Umurhan et al. 2020).
Although RDI theory formally applies to the limit ò= 1, we

find Equation (40) is still a useful guide in identifying classic SI
modes even when ò> 1. Note, also, that RDIs do not
distinguish between different origins of dust–gas drift. Thus,
for example, at a pressure extremum (h = 0) the radial drift
caused by the magnetic torque alone can, in principle, also
drive RDIs. However, in practice, we find the azimuthal drift
dominates in this limit and leads to the non-RDI instability
described in Section 3.1.

3.2.2. Magnetic Fields and the Classic SI

When a live magnetic field is present, for example in Case II,
we find that magnetic perturbations can stabilize the classic SI,
most notably in dust-poor disks, even with large resistivities. In
Appendix D we present a toy model based on a one-fluid
description of a dusty, magnetized gas. For Kx/Kz, ò, Λz= 1,
Equation (D16) gives the dispersion relation

s h s s h
s s s h

+ - + -
+ L + - =

ˆ ( ) ˆ ˆ
ˆ ( ˆ ˆ ) ( )

 





iK iK

iK

St 2 St 2 St

2 St 2 St 0 41
x x

z x

3 2

2

to leading order in Λz, where s s= Wˆ . One can then show that
at h= K 1 2Stx ( z= ∣ ∣1 x for ò= 1), where the resonant
Kz→∞ , SI growth rates decrease as Λz increases from zero,
presumably due to stabilization by magnetic tension.
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3.2.3. Streaming Instability of Alfvén Waves

A magnetized gas can support additional MHD modes: the
fast and slow magneto-sonic and Alfvén waves. In a dusty
media these MHD waves can resonate with the dust–gas drift
and produce a variety of instabilities (Hopkins & Squire 2018;
Seligman et al. 2019; Hopkins et al. 2020). However, their
relevance to PPDs may be limited by nonideal effects (Hopkins
& Squire 2018), a conclusion consistent with our numerical
calculations below.

We demonstrate with Case II that Alfvén waves can drive
streaming-type instabilities. When rotation is neglected, the
dispersion relation for an Alfvén wave with a purely vertical
background field is

w = ( )C k 42Az zgas
2 2 2

(e.g., Ogilvie 2016). Using Equations (42), (33), and (38), the
resonance condition between Alfvén waves and dust–gas drift
becomes

z b= ( )K K 43z x x z
2 2 2

h b ( ) ( )  K4St , St 1 , 44z x
2 2 2

where the second expression applies to small grains in dust-
poor disks without a horizontal field. We can therefore expect
instabilities in a magnetized, dusty disk with Kz∝ Kx. For
St= 0.1, h = 0.05, βz= 104, we find Kz; Kx, while smaller βz
reduces the resonant Kz for a given Kx. That is, a stronger
vertical field produces more vertically elongated disturbances.

For Case II we only consider an initially vertical field. If a radial
field is also present, Equation (42) becomes w = +C kAz zgas

2 2 2

C kAR x
2 2, where CAR is the Alfvén speed associated with the

radial field. The RDI condition then generalizes to =Kz
2

z b z b-( )K 1 1x x z x R
2 2 2 , where b º C CR s AR

2 2 , implying the
resonant Kz is reduced in magnitude. However, a live radial
field will be wound up by the background shear so that
βR→∞, and this reduction eventually vanishes. The azi-
muthal field generated by the shear would take no part in
axisymmetric RDIs.

3.3. Dynamical Effect of Dust on the MRI

The presence of tightly coupled dust is expected to reduce
the Alfvén speed since the total density increases with dust

loading, ρg→ ρg(1+ ò). One can then define

=
+

( )


C
C

1
, 45Az

Az
,eff

as the effective vertical Alfvén speed of a dusty gas, and
similarly for the azimuthal speed. In ideal MHD this reduction
increases the most unstable kz (∝ 1/CAz,eff), while in resistive
disks dust loading reduces growth rates (µCAz,eff

2 ) and the most
unstable kz (∝CAz,eff); see Sano & Miyama (1999) for
expressions in the pure gas limit. We demonstrate these effects
in Sections 4.3 and 4.4.

4. Numerical Results

In this section, we solve Equation (36) numerically to obtain
the dispersion relation s s h b= Lf f( )k k, ; , ,x z z z, , . To connect
our results to previous studies, we base our setups on that for
the LinA (St= 0.1, ò= 3) and LinB (St= 0.1, ò= 0.2) SI
eigenmodes described in Youdin & Johansen (2007). We
normalize growth rates by Ω and wavenumbers by Hg. Note
that this differs from the conventional wavenumber normal-
ization by ηtotR, since we will consider disks with ηtot= 0.
Otherwise, the fiducial value of the reduced pressure gradient
h h= = h 0.05tot g . For LinA and LinB the fiducial wave-
numbers are, then, Kx,z= 600 and Kx,z= 120, respectively. We
apply a lower limit to the growth rates at s= 10−5 Ω.
In Table 1 we list the selected modes in our dusty,

magnetized disks. These include SI modes modified by a
background accretion flow, SI modes at pressure extrema that
are driven by azimuthal drift, and the SI of Alfvén waves.
To help identify the dominant source of the instabilities

uncovered, we also examine the pseudo-kinetic energy of the
modes, = å =U Ui itot 1

3 (Ishitsu et al. 2009; Lin 2021), con-
structed from the eigenvectors, where U1 corresponds to
thermal or pressure contributions, U2 to that from dust–gas
drift, and U3 from the magnetic field. In all of the cases
examined, U1 is negligible as the modes are nearly incompres-
sible. We thus focus on U2 and U3 (the latter only applicable to
Case II). We further decompose U2 into components associated
with the background radial and azimuthal drifts, and the drift in
the perturbed velocities. Details are given in Appendix E. In
plots we normalize Ui by Utot.

Table 1
Selected Unstable Modes in Dusty, Magnetized Protoplanetary Disks

Mode ò Kx, Kz h βf, βz Λf, Λz αM σ/Ω Comment

LinA 3 600, 600 0.05 ∞ , ∞ ∞ , ∞ 0 0.4190 − 0.3480i Classic SI
LinAI 3 600, 600 0.05 10, ∞ 10−4, ∞ 0.125 0.4339 + 0.5671i SI with magnetically induced accretion
LinAIeta0 3 5000, 100 0 10, ∞ 10−3, ∞ 0.0125 0.1358 + 0.6140i SI without pressure gradients
LinAII 3 1000, 25 0.05 ∞ , 100 ∞ , ∞ 0 0.1248 + 0.4911i SI of Alfvén waves

LinB 0.2 120, 120 0.05 ∞ , ∞ ∞ , ∞ 0 0.0154 + 0.4998i As above but in a dust-poor disk
LinBI 0.2 120, 120 0.05 10, ∞ 10−4, ∞ 0.125 0.0243 + 1.1237i
LinBIeta0 0.2 5000, 100 0 10, ∞ 10−3, ∞ 0.0125 0.1377 + 2.4515i
LinBII 0.2 1000, 83 0.05 ∞ , 100 ∞ , ∞ 0 0.2215 + 6.7181i

Note. All modes employ St = 0.1. The classic SI modes LinA and LinB of Youdin & Johansen (2007) are reproduced for comparison. The limit of zero initial toroidal
and vertical fields are denoted by βf,z →∞, while the ideal MHD limit is attained for Λf,z → ∞ . Disks initialized with a purely horizontal field (βz = ∞ ) do not
evolve the induction equation, and magnetic perturbations are assumed to be zero. These models possess a nonzero magnetic stress, αM (Equation (32)). Disks
initialized with a purely vertical field (βf = ∞ ) include the full induction equation and Lorentz forces in the perturbed state.

6

The Astrophysical Journal, 926:14 (24pp), 2022 February 10 Lin & Hsu



4.1. Case I: Classic SI in Magnetically Accreting Disks

We begin by adding a horizontal magnetic field with βf= 10
to LinA and LinB. We vary the drift speeds induced by the
field, which remains passive, through Λf. Similar values of βf
have been considered (e.g., Krapp et al. 2018), although these
are rather strong fields compared to those typically found in
numerical simulations (e.g., Cui & Bai 2021, who find a gas-to-
magnetic pressure ratio of order 100). However, as emphasized
in Section 2.5, it is the magnetic stress, αM, that is relevant to
Case I. For nominal values of hg= 0.05, βf= 10, and
Λf= 10−3, we obtain αM= 0.0125, which is consistent to
nonideal MHD disk simulations (e.g., Bai 2017; Béthune et al.
2017; Riols et al. 2020).

Figure 1 shows that SI growth rates increase with decreasing
Λf, while oscillation frequencies become more negative and
can exceed Ω in magnitude. For LinB, growth rates can
increase by 50% for Λ= 10−4 (αM∼ 0.1) compared to the
unmagnetized limit. Growth rates for other field strengths can
be inferred from the equivalent αM, as shown in the Figure. For
example, if βf= 100 (i.e., a factor 10 increase), then αM would
decrease by a factor of 100 at fixed Λz (see Equation (32)).
Thus for Λz 10−4 the new growth rates would be equal to
those with βf= 10 and Λz 10−2, or αM 10−3, in which
case the magnetically induced accretion has no effect.

Recall that the magnitude of the dust–gas radial drift
decreases with increasing strength of the magnetic torque,
while that of the azimuthal drift increases (Section 2.2). This
suggests that the increasing growth rates are attributed to the
azimuthal drift. We confirm this in the bottom panels of
Figure 1 by plotting the contributions to the modes’ pseudo-
kinetic energy. For LinA, modes are driven by the radial drift,
but its contribution drops slightly at Λf= 10−4 (αM∼ 0.1),
whereas that from the azimuthal drift increases.

On the other hand, for LinB, azimuthal drift has twice the
contribution as radial drift even for negligible magnetic
stresses, while the radial-drift contribution drops noticeably
(even becoming slightly negative) for Λf 10−3 (αM 0.01).
It is also the case for LinB that the increase in growth rates is
more pronounced. This indicates that an accretion flow
primarily affects SI modes in which the azimuthal drift plays
a dominant role.

We conclude that in dust-poor disks SI will be moderately
boosted by an underlying, magnetically induced accretion flow
if the corresponding αM 10−2, while in dust-rich disks the SI
only becomes slightly more unstable. The enhancement is
limited due to the fact that with a typical h of O(hg), the drifts
induced by the magnetic field remain small compared to those
directly induced by pressure gradients. However, this picture
changes when we consider regions with vanishing h, as
explored next.

4.2. Case I: SI with Vanishing Pressure Gradients

Here we examine the SI with vanishing pressure gradients
(h  0). These models can be considered as representing
regions near to or at a pressure bump. In this section, we
include a small gas viscosity and dust diffusion characterized
by αSS (see Appendix B) to regularize the problem at large
wavenumbers. Otherwise, we find unstable modes can develop
on arbitrarily small scales with frequencies |σ|?Ω, which are
likely unphysical. Unless otherwise stated, we set αSS= 10−9.
In Figure 2 we plot unstable modes as a function of

wavenumbers and pressure gradients for the magnetized LinA
setup. We fix βf= 10 and Λf= 10−3, or αM= 0.0125. For
h 0.005 , we find classic SI modes with growth rates up to Ω
for Kx∼ 103–104 and Kz∼ 104. The most unstable wavenum-
bers translate to kxηtotR∼ 50 and kzηtotR∼ 500 for h = 0.05
and to about 50 for h = 0.005. As shown in the pseudo-energy
plots, these modes are attributed to the radial drift.
We find unstable modes change character as h drops

to� 5×10−4. As shown in the right two columns of
Figure 2, the instability maintains a dynamical growth rate of
O(0.1Ω) with a characteristic Kx∼ 104, independent of Kz,
except at large Kz where the viscous cut-off applies. In fact,
instability persists even for Kz≡ 0, indicating these modes are
one-dimensional (1D) with negligible perturbations in the gas
and dust vertical velocities, as well as that of the gas radial
velocities (see Appendix C).
We remark that for h = ´ - 5 10 4, Kx= 104 corresponds to

kxηtotR= 5. In this sense, these modes have longer radial
lengthscales than the standard SI observed for h 0.005 . Most
notably, however, is that as h  0, unstable modes are driven
by the azimuthal drift with negligible contributions from the

Figure 1. Streaming instability with a background laminar gas accretion flow driven by large-scale, passive horizontal magnetic fields, as a function of the azimuthal
Elsässer number, Λf, for fixed βf = 10, which translates to a range of dimensionless magnetic stresses, αM. The grain size is fixed to St = 0.1. Top: mode growth rates
(black) and oscillation frequencies (red). Bottom: contributions to the modes’ pseudo-kinetic energy from the background radial drift (dashed), the background
azimuthal drift (solid), and the relative drift in the perturbed velocities (dotted). Left: a dust-rich disk with ò = 3. Right: a dust-poor disk with ò = 0.2.
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radial drift. Even when there is no pressure gradient whatsoever
(h = 0), we find growth rates up to O(0.1Ω).

Similarly, in Figure 3 we show how modes in the dust-poor
LinB setup evolve as the pressure gradient decreases to zero.
Again we find the classic SI modes dominate for h 0.005 ,
here corroborated by the coincidence of the most unstable
wavenumbers with the RDI resonance condition for the SI as
given by Equation (40). For h = ´ - 5 10 4, however, the RDI
condition no longer predicts the most unstable modes, although
a cluster of subdominant, classic SI modes are still found
around the RDI condition. For h ´ - 5 10 4 , we again find
the most unstable modes are completely dominated by
azimuthal drift and can reach growth rates of O(0.1Ω).
However, for large Kx (here∼ 104) we find the modes have
large oscillation frequencies, |ω| 10 Ω, implying that
t w∣ ∣ 1s  , which may violate the fluid approximation of dust
(Jacquet et al. 2011).

In Figure 4 we examine how growth rates vary with βf at
fixed Λf= 10−3, or more precisely as a function of αM. Here,
we set Kz= 0 and maximize growth rates over Kx. Per the
simplified model in Appendix C, growth rates decrease with
αM and consequently with azimuthal drift. Note that the cut-off
at finite αM is due to dust diffusion, without which growth
would persist for decreasing αM by going to arbitrarily small
scales. For αSS= 10−9, the instability is quenched when
αM 10−3 for ò= 3 and when αM 10−4 for ò= 0.2.
Although the corresponding critical magnetic fields of
βf; 40 and βf; 100 are strong, these βf values scale as

Lf
-hg

1 2 (see Equation (32)), and so would increase with
increasing hg, decreasing Λf, or both. Thus the instability is
more easily realized in highly resistive disks. Larger αSS

requires stronger azimuthal drifts for instability.
The results in this section suggests that in accreting disks the

SI can still operate in regions of weak or even zero pressure
gradients, provided there is sufficient magnetic stress to drive
gas accretion with a corresponding αM 10−4

–10−3. However,
its nature differs from the classic SI: here the SI is driven by the
relative azimuthal drift between dust and gas, which is largely
induced by the torque acting on gas that is responsible for the
underlying accretion flow.

4.3. Case II: Dust Feedback on the MRI and the SI of Alfvén
Waves

We now consider disks in the limit of ideal MHD with an
initially vertical field and account for Lorentz forces in the
perturbed state, i.e., a live field. Recall that a purely vertical
field does not modify the background drift velocities from the
hydrodynamic limit, since βf→∞ and hence Ff→ 0 (see
Equations (14)–(17)): there is no magnetically induced
accretion flow as in Case I. Here we fix h = 0.05.
We begin by examining how dust loading affects the MRI in

disks with ò= 0.2 and ò= 3. The ensuing MRI turbulence
would stir up dust grains, so considering dust-to-gas ratios of
order unity may not be self-consistent with a settled dust layer;
e.g., Yang et al. (2018) find ò∼ 0.3 under ideal MRI turbulence

Figure 2. Unstable modes in dusty disks with a background laminar gas accretion flow driven by a passive, horizontal magnetic field. Top and middle: growth rates
and oscillation frequencies as a function of wavenumbers, respectively. The dotted line in the top panel corresponds to the resonant drag instability condition for the
classic streaming instability (Equation (40)). Bottom: contributions to the pseudo-energy from the background radial drift (dashed), background azimuthal drift (solid),
and perturbed drift velocities (dotted). These are shown for a fixed Kz as indicated by the dashed–dotted line in the top panel and limited to modes with growth
rates > 0.01 Ω. Left to right: decreasing total radial pressure gradients, h, with the right-most column showing results for vanishing pressure gradient. A small gas
viscosity and dust diffusion with αSS = 10−9 is included to regularize the problem at large wavenumbers.
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and solar metallicities (or without feedback). However, order-
unity values of ò can be reached at supersolar metallicities
because of feedback (Yang et al. 2018) or from radial
concentrations by zonal flows (Dittrich et al. 2013) and so
are still relevant to explore.

Figure 5 shows MRI growth rates as a function of Kz at
fixed Kx= 0 and βz= 104. The maximum growth rate of 0.75
Ω is unaffected by the dust. However, with increasing ò the
MRI shifts to smaller vertical scales. In a pure gas
disk the most unstable MRI mode has =k C C15 4z s Az

(Sano & Miyama 1999). However, in a dusty gas we expect
 + C C 1Az Az (see Section 3.3) and thus the most

unstable µ + k 1z increases with dust loading. This
prediction is confirmed in the figure.
Next, Figure 6 show growth rates for the LinA (ò= 3) and

LinB (ò= 0.2) setups in wavenumber space and for different
levels of magnetization. Starting with the leftmost column with
βz= 100, the rectangular region with Kx,z 20–30 corresponds
to the MRI. However, the most prominent feature here is the
cluster of new modes around the straight solid line for Kx 102

(ò= 3) and Kx 20 (ò= 0.2), which corresponds to the
resonance condition between Alfvén waves and the dust–gas
radial drift (Equation (44)), indicating they are a new class of
RDI modes unique to dusty, magnetized gas.
These Alfvén wave streaming instabilities (AwSI) extend the

parameter space of unstable modes to much smaller lengths-
cales compared to a pure gas disk, wherein only the MRI
occurs (see Figure 16). However, the maximum growth rates of
the AwSI modes are typically of O(10−1 Ω), which is slower
than the MRI.4 Going rightwards to weaker magnetizations, the
AwSI modes shift to smaller vertical scales, which is consistent
with the resonant condition Equation (44).
In the top panels of Figure 6 we also overplot the RDI

condition for the classic SI (Equation (40)) as the dotted curves.
However, for βz� 104 we do not find modes to cluster around
this resonance. For example, with βz= 100, at the LinA (LinB)
wavenumbers Kx,z= 600 (Kx,z= 120) we find growth rates
10−4 Ω (2× 10−4 Ω), which is much smaller than the classic,
unmagnetized SI growth rate of 0.42 Ω (0.015 Ω). This

Figure 3. Same as Figure 2 but for a dust-to-gas ratio of ò = 0.2.

Figure 4. Growth rates of the azimuthal-drift-driven streaming instability in
disks without pressure gradients (h = 0) as a function of the plasma beta
parameter, βf, at fixed Λf = 10−3, which corresponds to a range of magnetic
stresses, αM. Modes have no vertical structure (Kz = 0) and growth rates are
maximized over the radial wavenumbers, Kx, at each βf (or αM). The black
(red) curve show results for a dust-rich (dust-poor) disk with ò = 3 (ò = 0.2).
The solid (dashed–dotted) curves are obtained with a viscosity and diffusion
coefficient of αSS = 10−9 (10−5).

4 We do find AwSI modes that can grow faster than 0.75 Ω (i.e., the MRI),
but these occur at Kx,z  O(104).
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indicates that the classic SI is suppressed by magnetic
perturbations. It is only with an extremely weak field (here for
βz� 106) do we observe classic SI modes, but even then the
most unstable modes occur at high Kz and are attributed to the
MRI and the AwSI.

4.4. Case II: MRI and SI in Resistive Disks

We now add a constant resistivity, ηO, to Case II to mimic a
dead zone in the disk midplane (Gammie 1996a). As before, we
first examine the effect of dust loading on the MRI. Here, the
resulting MRI turbulence would be dampened by ohmic
resistivity. In this case, while grains do not settle much more
than in ideal MHD (Fromang & Papaloizou 2006; Yang et al.

2018), weakened horizontal diffusion coupled with dust
feedback can drive strong radial dust concentrations that lead
to order-unity (or larger) values of ò in the dead zone (Yang
et al. 2018).5 This motivates our consideration of high dust-to-
gas ratios.
Figure 7 shows that increasing ò decreases both the MRI

growth rates and the corresponding Kz, so modes develop on
larger vertical scales in dust-rich disks. This can again be
explained by the fact that the effective Alfvén speed decreases
with ò as the total density of the system increases. In resistive,
gaseous disks with Λz= 1, however, the most unstable MRI

Figure 5. Ideal magneto-rotational instability growth rates in dusty disks threaded by a vertical magnetic field with strength βz = 104 and dust-to-gas ratio ò = 3 (blue)
and ò = 0.2 (brown). The grain size is fixed to St = 0.1. The most unstable vertical wavenumber in the pure gas limit is marked by the solid vertical line. Assuming
dust loading reduces the Alfvén speed by increasing the total density of the system, the resulting most unstable Kz are marked by the dashed and dashed–dotted vertical
lines.

Figure 6. Growth rates of unstable modes in a dusty, actively magnetized disk initialized with a vertical field in the limit of ideal magneto-hydrodynamics. The grain
size is fixed to St = 0.1. From left to right: decreasing magnetic field strength (increasing plasma beta parameter βz). Upper row: dust-rich disks with ò = 3. Bottom
row: dust-poor disks with ò = 0.2. Solid lines correspond to the resonant drag instability (RDI) condition between Alfvén waves and the dust–gas radial drift
(Equation (44)). Dotted lines correspond to the RDI condition for the classic streaming instability (Equation (40)).

5 However, note that Yang et al. (2018) adopt Λz ∼ 2 × 10−4, which is much
smaller than the values we consider.
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mode has h=k C3z Az O with growth rate h=s C0.75 A O
2

(Sano & Miyama 1999). Again, in a dusty gas CAz→CAz,eff

(see Equation (45)) so now kz∝ (1+ ò)−1/2 while
s∝ (1+ ò)−1. These reductions are indeed observed for ò= 3
compared to ò= 0.2 in the figure.

Figure 8 shows growth rates with fixed βz= 104 as a
function of Kx,z and Λz. We find that AwSI modes are easily
damped by resistivity: even with Λz= 10 there is only a hint of
their presence around Kx,z∼ 102 as the “flared” region to the
top-right of the MRI modes (this is more pronounced for
ò= 0.2). Note that the RDI condition for the AwSI modes
(solid lines) appears to have no relevance to the features in the
figure; although coincidentally for ò= 0.2 and Λz= 0.1 they
mark the maximum Kz beyond which classic SI modes are
strongly stabilized.

In the ò= 3 disk the classic SI appears for Λz� 1 and its
properties are similar in this regime. However, in the ò= 0.2

disk the SI only appears for Λz� 0.1, indicating that slowly
growing SI modes are more easily stabilized by the magnetic
field. For Λz= 0.1, notice also the SI modes are damped for
Kz 102, as mentioned above.
Thus in resistive, dust-poor disks, there is a lower bound to

the scales at which the SI operates, here being 0.01 Hg in
both radial and vertical directions. This is unlike the Λz= 10−2

disk, which is effectively unmagnetized, where the SI can
operate on much smaller vertical scales as growth rates increase
and plateau at large Kz.
To confirm the magnetic stabilization of the SI, we show in

Figure 9 the pseudo-energy decomposition for the SI modes
satisfying the RDI condition for ò= 0.2 and Λz= 0.01, 0.1.
Note that the resonant Kz→∞ as Kx→ 1/|ζx| (∼100 here)
according to Equation (40), as expected drag forces (U2) are
destabilizing, but magnetic forces are stabilizing (for ease of
comparison we show−U3). The latter effect intensifies with

Figure 7. Resistive magneto-rotational instability growth rates in dusty disks threaded by a vertical magnetic field with strength βz = 104 and dust-to-gas ratio ò = 3
(blue) and ò = 0.2 (brown). The grain size is fixed to St = 0.1. The most unstable vertical wavenumber in the pure gas limit is marked by the solid vertical line.
Assuming dust loading reduces the Alfvén speed by increasing the total density of the system, the dashed and dashed–dotted vertical lines mark the resulting most
unstable Kz, and the red open circles mark the corresponding maximum growth rates.

Figure 8. Similar to Figure 6 but for fixed βz = 104 and resistivity decreasing from left to right (increasing Elsässer number Λz).
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increasing wavenumber, but for Λz= 0.01 it is always
subdominant, so the SI persists. However, for Λz= 0.1, both
magnetic and drag contributions increase rapidly with Kx,z, here
resulting in a near cancellation and the SI being effectively
quenched. The toy model presented in Appendix D also
indicates magnetic stabilization at low dust-to-gas ratios for
resonant modes with Kz? Kx.

5. Direct Simulations

To verify the new instabilities uncovered above—namely,
the azimuthal-drift-driven SI without pressure gradients
(Section 4.2) and the Alfvén wave SI (Section 4.3)—we also
solve the full shearing box equations directly. To this end, we
have developed a finite-difference code to evolve
Equations (22)–(26) in their conservative form. We approx-
imate spatial derivatives with a sixth-order central finite-
difference scheme and integrate in time with a fourth-order
Runge–Kutta method. We follow the ATHENA code to treat the
source terms related to tidal and Coriolis forces, the large-scale
radial pressure gradient, and torques due to a horizontal
magnetic field if applicable (Stone & Gardiner 2010). We
integrate the dust–gas drag term explicitly.

In Appendix F we test the code by reproducing the standard
LinA and LinB SI growth rates, as well as MRI growth rates
with and without resistivity. We have found this simple code to
be adequate for our primary goal of confirming linear theory.

5.1. Numerical Setup

We perform axisymmetric simulations in the (x, z) plane but
include all three components of the velocity and magnetic fields
(the latter for Case II). The domain x ä [− Lx/2, Lx/2] and
z ä [− Lz/2, Lz/2] is discretized into Nx= 100 and Nz= 100
uniform cells, respectively. To test an eigenmode with
wavenumbers kx and kz, we set the domain size to be one
wavelength in each direction, i.e., Lx,z= 2π/kx,z. We adopt Lx
as a unit of length and Ω−1 as the unit of time. The velocity
normalization is therefore LxΩ≡ unorm. The mass scale is
arbitrary for a non-self-gravitating disk, but, for convenience,
we take ρg= 1≡ ρnorm in the equilibrium.

We initialize each simulation in a steady state consisting of
constant densities and drift velocities, as discussed in
Section 2.3. Following Youdin & Johansen (2007), we add a

pair eigenmodes with the same kx but oppositely signed kz as a
perturbation. The eigenmode amplitude is scaled such that
δρd= 0.01ρnorm. We apply periodic boundary conditions in x
and z.

5.2. Azimuthal-drift-driven SI without Pressure Gradients

Here, we test for the SI driven by the azimuthal drift induced
by magnetic torques from a horizontal field. We adopt the setup
of Case I with βf= 10 and Λf= 10−3, or equivalently
αM= 0.0125. We set h = 0 so the equilibrium drift, which is
dominated by the azimuthal drift, is entirely due to magnetic
torques. For the perturbation we choose Kx= 5000 and
Kz= 100, which results in a “tall” shearing box as our domain.
We consider ò= 3 and 0.2, for which the linearly unstable
eigenmodes are labeled “LinAIeta0” and “LinBIeta0” in
Table 1. For this test we do not evolve the magnetic field,
assuming the resistivity is sufficiently large such that the field
remains passive.
Figures 10 and 11 show the evolution in the perturbed dust

density. The upper panel shows the maximum value measured
in the domain, while the lower panel shows wz at a fixed grid
point. The measured growth rates 0.1360 Ω for ò= 3 and
0.1380 Ω for ò= 0.2 are close to that calculated from linear
theory (s= 0.1358 Ω and s= 0.1377 Ω, respectively).
Furthermore, for ò= 3 we measure an oscillation period of
T; 10 Ω−1, which is close to that expected from linear theory
as 2π/|ω|= 10.233 Ω−1. Similarly, for ò= 0.2 we measure
T; 2.6 Ω−1, compared to the theoretical period of 2.56 Ω−1.
This shows that in dust-poor disks the azimuthal-drift-driven SI
is highly oscillatory. We find growth rates begin to deviate
from linear theory after a few periods. Nevertheless, the close
agreement in the early phase of the simulations confirms that
the SI can operate without pressure gradients if the gas is
subject to passive magnetic torques.
We note that for large Kx the azimuthal-drift-driven SI is

insensitive to Kz (see Figures 2–3) and in fact persists with

Figure 9. Pseudo-energy decomposition of the classic streaming instability (SI)
in a magnetized disk with βz = 104, ò = 0.2, and St = 0.1. Left: Λz = 0.01.
Right: Λz = 0.1. Blue: the destabilizing contribution from dust–gas drag. Red:
stabilizing contribution from magnetic perturbations (the negative of the
magnetic pseudo-energy is shown). Here, we consider modes with Kx and Kz

satisfying the resonant drag instability condition for the SI, Equation (40), i.e.,
along the dotted curve in the corresponding panels of Figure 8. Figure 10. Numerical simulation of the streaming instability without pressure

gradients (h = 0), driven by the azimuthal drift induced by passive, horizontal
magnetic torques with βf = 10, Λf = 10−3, or equivalently αM = 0.0125. The
Stokes number (or grain size), St, and dust-to-gas ratio, ò, are 0.1 and 3,
respectively. Top: maximum dust density perturbation in the domain. Bottom:
evolution of the dust density perturbation at (x, z) = (0.3Lx, 0.3Lz). Simulation
results are shown in open red circles, while the prediction from linear theory is
shown as the solid curves.
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Kz= 0 (Appendix C). Indeed, we have also performed 1D
simulations in x only and recovered similar growth rates as
above.

5.3. Alfvén Wave SI

Here we adopt the setup of Case II with a live magnetic field
to test for the AwSI, which results from a resonance between
Alfvén waves and the radial dust drift. The induction equation
and Lorentz forces are evolved. We consider ideal MHD with
an initially vertical field with βz= 100 and revert to the
nominal pressure gradient h = 0.05. The eigenmodes are
labeled as “LinAII” and “LinBII” in Table 1 for ò= 3 and
0.2, respectively. We fix Kx= 1000 but choose Kz= 25 for
LinAII and Kz= 83 for LinBII in accordance with the RDI
condition given by Equation (44), i.e., these are resonant
wavenumbers. Note that our domain size of one mode
wavelength is sufficiently small to exclude the MRI, which
operates on larger scales. However, the MRI has the larger
growth rate (see Figure 6), which in reality would dominate and
drive rapid disk evolution. The examples here are chosen to
confirm the Alfvén wave SI.

Figures 12 and 13 show the evolution in the perturbed dust
density for the above cases. For LinAII the measured growth
rate and oscillation period are s= 0.1250 Ω and T=
12.8 Ω−1, which compare well with the theoretical values
of 0.1248 Ω and 12.79 Ω−1. Similarly, for LinBII we measure
s= 0.228 Ω and T= 0.94 Ω−1, compared with 0.2215 Ω and
0.9353 Ω−1 from linear theory.

6. Discussion

6.1. Planetesimal Formation in Accreting Pressure Bumps

We have shown that the SI persists in regions of weak or
vanishing pressure gradients, provided that there is sufficient
azimuthal drift between dust and gas. This suggests that the SI
can remain effective inside pressure bumps. Although we
considered the case of an azimuthal drift resulting from large-
scale, horizontal magnetic torques acting on the gas, our results
are not limited to this context. The constant azimuthal force,
Ff, which represents the background magnetic torque in our
models, may also represent other causes of radial gas accretion.
For example, as argued by McNally et al. (2017), if a vertical

angular momentum loss (e.g., due to disk winds) resulted in a
gas accretion equivalent to that induced by a corresponding Ff,
then our results still apply.
Using Equations (37) and (34), we can express the growth

rate of the azimuthal-drift-driven SI at a pressure extremum in
terms of the laminar, horizontal stress, αM,

a
W

=
+( )

( )


s
h K

St

2 1
, 46M x2 g

where we assumed St= 1. We can use this equation to assess
the relevance of the SI around pressure bumps, for example in
those found by Riols et al. (2020) in global nonideal MHD
simulations of dusty PPDs. Recall from Equation (32) that
a bµ f

-
M

2 so bµ f
-s 1 when other parameters are fixed.

In their nonideal MHD simulations, Riols et al. find that gas
accretion is largely due to angular momentum removed
vertically by a magnetized wind (and therefore occurs near
the disk surface), which is a few times larger than that
transported radially. The latter is dominated by horizontal
magnetic fields with dimensionless stresses of order 10−2 (see
also Béthune et al. 2017). Hence, we consider αM∼ 10−2

below.
Riols et al. (2020) also find the spontaneous formation of

pressure bumps due to a wind instability (Riols & Lesur 2019).
In one of their disk models, for a pressure bump at ∼20 au they
find that 3 mm sized dust grains (with St∼ 0.04) accumulates
into a ring of width∼ 0.6 Hg and settles to a thin layer of
thickness 0.25 Hg. In the ring, the vertically integrated dust-to-
gas ratio (or metallicity, Z) of all four dust species they
considered is about 0.3. We therefore take ò∼ 0.3. We then
find ~ W-s K10 x

3 for hg= 0.05, as used in their disk models.
The ring width limits Kx 10, which implies a growth
timescale 50 orbits.
Of course, the relative importance between the azimuthal-

drift-driven SI and the classic, radial-drift-driven SI depends on
the local pressure gradient, h. It is true that the classic SI
formally ceases only where h = 0 exactly; elsewhere in the
pressure bump it can still operate, though on vanishing scales
as one approaches the bump center. However, as discussed in
Section 2.6, the torque-induced azimuthal drift is expected to
become important when h a h StM g , which is consistent
with the numerical results in Section 4.2. We therefore expect a
finite region in which the azimuthal-drift-driven SI operates.
To make a crude estimate, we consider a Gaussian pressure

bump in the disk midplane, µ - -( )
P e

R R

a

0
2

2 2 , where a is the ring
width. Neglecting magnetic pressure, the magnitude of the
reduced pressure gradient near the bump center is

h
-∣ ∣ R R R

a
h

2
.0 0

2 g

The condition h a h StM g translates to

a a-
< =

∣ ∣ ( )R R
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g
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where we took a=Hg in the second equality. For the above
parameters we find azimuthal drift is significant within
|R− R0| 0.025 Hg. Hence the longest permissible radial
wavelength for the azimuthal-drift-driven SI is 0.05 Hg, or
Kx 102, for which the growth timescale is 16 orbits. We can
therefore expect rapid instability even close to the bump center.

Figure 11. Similar to Figure 10 except with ò = 0.2.
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We emphasize that the SI discussed above requires
azimuthal drift. However, it is possible to have a pressure
bump without such drift, e.g., those in geostrophic balance,
which have been considered in planetesimal formation
simulations (e.g., Carrera et al. 2021a, 2021b). In this case,
both gas and dust orbit at the Keplerian velocity at the bump
center, for which we expect neither the classic nor the
azimuthal-drift-driven SI.

6.2. Comparison with Secular Gravitational Instabilities

The secular gravitational instability (SGI; Youdin 2011;
Takahashi & Inutsuka 2014; Latter & Rosca 2017) is another
dust-clumping mechanism (Tominaga et al. 2018; Pierens
2021) that may facilitate planetesimal formation (Abod
et al. 2019). Here, dust–gas friction provides an effective

“cooling” (Lin & Youdin 2017) that removes pressure
support against gravitational instability (Lin & Kratter 2016).6

The SGI does not require large-scale pressure gradients, which
also makes it a candidate for planetesimal formation at pressure
bumps. It is thus of interest to compare the SGI with the
azimuthal-drift-driven SI discussed above.
To this end, in Figure 14 we calculate SGI growth rates

using Equation (13) of Takahashi & Inutsuka (2014) and
compare it with that of the azimuthal-drift-driven SI. We
consider two disk masses corresponding to Toomre parameters,
QT= 10 and 100. A dimensionless dust diffusion coefficient of
αSS= 10−9 is used without a corresponding gas viscosity as it
is neglected in Takahashi & Inutsuka’s Equation (13).
In the QT= 10 disk, the SGI dominates on most scales

except the largest (∼Hg), which are stabilized by rotation. For
QT= 100, the SGI still has the largest overall growth rate, but
only dominates for Kx 60. These results suggest that the
azimuthal-drift-driven SI is likely more relevant in low-mass
disks and at large scales compared to the SGI. When a larger
dust diffusion coefficient of αSS= 10−6 is adopted (not
shown), we find the instabilities have comparable maximum
growth rates (∼ 10−2 Ω), but the SI dominates over the SGI for
Kx 100, while both are cut-off for Kx 200–300.
Note that the SI model does not include disk self-gravity and

the SGI model does not include magnetically driven azimuthal
drifts. A proper comparison between these instabilities in a
unified framework is beyond the scope of this paper but should
be conducted in the future.

6.3. SI in Off-midplane Accreting Layers

Another region of vanishing pressure gradients is off of the
disk midplane. To see this, consider a standard Gaussian
atmosphere; then, the 3D pressure profile is

= -( ) ( ) ( ) ( )P R z P R z H, exp 2 . 483D
2

g
2

The corresponding dimensionless pressure gradient is

h h= -
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Figure 12. Streaming instability of Alfvén waves in a magnetized disk in the limit
of ideal magneto-hydrodynamics. The initial vertical field strength is βz = 100 and
the reduced pressure gradient is h = 0.05. The Stokes number (or grain size), St,
and dust-to-gas ratio, ò, are 0.1 and 3, respectively. Top: maximum dust density
perturbation in the domain. Bottom: evolution of the dust density perturbation at
(x, z)= (0.3Lx, 0.3Lz). Simulation results are shown in open red circles, while the
prediction from linear theory is shown as the solid curves.

Figure 13. Similar to Figure 12 except with ò = 0.2.

Figure 14. Comparison between the secular gravitational instability (SGI, red)
and the azimuthal-drift-driven streaming instability (black) as a function of
radial wavenumbers, Kx. SGI growth rates are computed from Equation (13) of
Takahashi & Inutsuka (2014) with Toomre parameters QT = 10 (solid) and
QT = 100 (dashed–dotted). The dust-to-gas ratio and Stokes number are fixed
to ò = 0.2 and St = 0.1, respectively. Neither disk models have radial pressure
gradients (h = 0). Modes have no vertical structure, Kz = 0.

6 Note that Lin & Youdin (2017) erroneously claimed an analogy between
SGI and viscous gravitational instabilities. Their Equation (60) for SGI growth
rates is, in fact, distinct from that of the latter (see Equation (18) of
Gammie 1996b).
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If h > 0, i.e., a negative midplane pressure gradient, then at
some height η3D will vanish since Hg increases with R. For
Hg∝ R and h = 0.05, we find η3D→ 0 as ∣ ∣z H2 g. Of
course, the dust-to-gas ratio will be small at this altitude due to
dust settling, especially for large grains. We may thus only
expect small grains there. However, Equation (46) shows that
growth rates are not strongly dependent on these parameters.
Indeed, even for ò= 0.01 and St= 0.01 we find
~ W-s K10 x

4 (assuming αM= 0.01 and hg= 0.05), so for
Kx∼ 100 the growth timescale ∼160 orbits is still short
compared to disk lifetimes. However, a small dust-to-gas ratio
may only lead to order-unity turbulent fluctuations rather than
dust clumping (Johansen & Youdin 2007).

Note that for z≠ 0 complications can arise from the dust-
settling instability (DSI): an RDI associated with a resonance
between inertial waves and the dust’s vertical settling motion
(Squire & Hopkins 2018b; Krapp et al. 2020). However, the
DSI requires Kz≠ 0, while the azimuthal-drift-driven SI can
operate for Kz= 0. We thus expect vertically extended modes
to be unaffected by settling.

We remark that the SGI is probably unimportant in the disk
layers away from the midplane due to low values of ò and high
values of QT locally (Takahashi & Inutsuka 2014).

6.4. Dust Feedback and the Ideal MRI

In a realistically stratified disk and considering ideal MHD,
MRI modes can only develop if they fit into the gas disk
thickness, 2Hg. Now, the characteristic MRI vertical wave-
number is kz∼Ω/CAz,eff, where the effective Alfvén speed
CAz,eff= (1+ ò)−1/2CAz decreases with dust loading since the
total density increases. Then for a given field strength, βz, in the
dust-free limit, we require kz> π/Hg, or

b
+

( )


10

1
50z 

upon dust loading for the ideal MRI to operate. Thus if the MRI
operates without dust, it will continue to operate in the presence
of dust, although it will shift to smaller vertical scales. While
the maximum growth rate remains at 0.75 Ω, growth rates for
modes with kzΩ/CAz are somewhat reduced by dust loading,
as shown in Figure 5.

Recently, Yang et al. (2018) carried out stratified MHD
simulations including dust and found that the particles sediment
to a thinner layer when the metallicity, Z, is increased. They
attributed this to the reduction in the effective sound-speed of
the dusty gas (Lin & Youdin 2017). We point out another
possible contributing factor from dust feedback onto the MRI.

For ideal MHD simulations without particle feedback, Yang
et al. (2018) find a turbulence strength of αSS∼ 10−2. Using
the diffusion model of Dubrulle et al. (1995), the expected
particle scale height is aH HStd SS g if αSS= St. For
St= 0.1, this gives Hd; 0.3 Hg, as found in the authors’
simulations. The most unstable MRI wavelength
l p b~ H2z z,opt g . Then, for βz= 104 we find λz,opt; 0.06
Hg= 2 Hd. This means that, upon the introduction of dust
feedback, MRI modes with vertical lengthscales comparable to
the dust layer thickness (i.e., those having kzΩ/CAz; see
Figure 5) will be damped, which may promote further settling.

In practice, however, feedback is only important if the local ò
is O(1) or larger, so this effect should only be appreciable at

high Z. Indeed, Yang et al. (2018) find Hd is only reduced by a
factor of 1.5 for an eight-fold increase in Z to 0.08 from its
canonical value of 0.01.

6.5. Dust Feedback and the Resistive MRI

In resistive disks the characteristic MRI vertical wavelength
is kz∼CAz,eff/ηO. Thus for fixed ηO, defined through Λz in the
dust-free limit, requiring the MRI to fit inside the gas disk
yields

b
L

+( ) ( )10
1 . 51z

z
2



This condition becomes more difficult to fulfill as ò increases,
which reflects the increasing vertical length scale. Furthermore,
growth rates are damped on all length scales by dust feedback
(Figure 7).
The result above suggests the possibility of self-sustained

dust settling as follows. Consider a dusty disk undergoing
resistive MRI turbulence but without dust feedback. For
reference, in such a simulation Yang et al. (2018) measured a
Hd= 0.2 Hg for St= 0.1 and βz∼ 104 in quasi-steady state as
settling is balanced by turbulent stirring. Switching on
feedback weakens the MRI, so the dust grains begin to settle,
which further increases ò and weakens the MRI. This positive
feedback loop cannot continue indefinitely, however, as the
gaseous layers above and below the dusty midplane can still
undergo full (resistive) MRI turbulence and stir the particle
layer (Fromang & Papaloizou 2006). Nevertheless, we can
expect thinner dust layers in higher-metallicity disks because
the MRI is progressively suppressed. This scenario is similar to
that outlined for the vertical shear instability in the presence of
dust (Lin 2019).
A shortcoming of the above discussion (including

Section 6.4) is that the estimates given in Equations (50) and
(51) assume a uniform dust-to-gas ratio. In the stratified
context, ò could be taken as the average value over the vertical
column, in which case ò∼ Z= 1 and thus feedback should
always be negligible in an averaged sense.
On the other hand, we can apply a similar argument for

fitting MRI modes within the dust layer, wherein ò may reach
order unity or larger. Doing so, we find the critical
b b ( )H Hz z g d

2, implying it is difficult to have MRI modes
confined to a highly settled dust layer. This does not prevent
MRI modes from operating in the gas outside the dust layer,
however. Stratified analyses are required to study MRI modes
with vertical wavelengths that exceed the dust layer thickness
yet still fit within the gas disk.

6.6. Magnetic Stabilization of the Classic SI

In Sections 4.3–4.4 we found that a live vertical magnetic
field can suppress the classic SI, which is a stronger statement
than MRI modes outgrowing the SI. For ideal MHD, there is no
trace of the classic SI for βz� 104. While the classic SI does
appear at βz= 106, the most unstable modes are mixed with the
MRI. It is only with βz= 108, i.e., an extremely weak field, and
with ò= 3, do we find distinct classic SI modes that dominate
the system. This observation, together with the fact that we
considered rather large grains with St= 0.1, which should
favor the SI, suggests that the classic SI is sensitive to magnetic
stabilization.
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As a consequence, for typical values of βz= 104 adopted for
PPDs, the classic SI is only present with sufficient resistivity.
For ò= 0.2 we only partially recover the SI with Λz� 0.1 (high
vertical wavenumbers are still damped), and Λz= 0.01 is
needed for SI modes to outgrow the MRI. At high dust-to-gas
ratios, magnetic stabilization is less effective as we find the SI
dominates over the MRI with Λz� 1 when ò= 3. However,
should such a high ò be attained through dust settling, then
(MRI) turbulence cannot be too strong in the first place, which
sets an upper bound on Λz. Therefore, whether or not the SI can
occur in magnetized disks is still determined by the value of Λz

below which either the MRI wavelengths exceed the disk scale
height (and therefore does not operate), or when SI growth
rates exceed the resistive MRI.

6.7. Dust Clumping in MHD-turbulent Disks

At present, the connection between the linear SI and
nonlinear clumping—and hence planetesimal formation—is
still unclear (Lesur et al. 2021). Nevertheless, our results
suggest that dust clumping directly via the SI may be more
difficult in magnetized disks due to magnetic stabilization. This
is in addition to stirring by MRI turbulence, which may prevent
dust sedimentation.

On the other hand, planetesimal formation has been
successfully simulated in MRI-turbulent disks (Johansen
et al. 2007, 2011), but this is not necessarily in contradiction
with our results. This is because of the formation of zonal flows
or pressure bumps in MRI-turbulent disks (Johansen et al.
2009a) that can trap dust (Dittrich et al. 2013; Xu & Bai 2022).
Similar radial dust concentrations can develop in models with
dead zones owing to the weak radial diffusion of particles
(Yang et al. 2018). In either case, the enhanced dust-to-gas
ratio in these dust traps should, according to our results, reduce
the effect of the MRI and favor further concentration and
eventually allow the classic SI to operate, though perhaps not at
the exact center of pressure bumps.

6.8. Relevance of the Alfvén Wave SI in PPDs

Our numerical results indicate that the Alfvén wave SI
requires nearly ideal MHD conditions to operate. This makes
their relevance to PPDs questionable, since if ideal MHD
conditions are met, for example in the inner disk (Flock et al.
2016), the MRI would generate vigorous turbulence and
overwhelm the Alfvén wave SI.

One possible exception is in the disk atmosphere where βz
increases relative to the midplane as the gas density drops. If
sufficiently magnetized, i.e., if βz 10 (Equation (50)), then
the MRI is stabilized, leaving AwSI modes to survive. As an
example, suppose βz∼ 104 at z= 0, then at |z|= 4 Hg we find
βz∼ 3 for a Gaussian atmosphere. Using Equation (49), at this
height the reduced pressure gradient parameter is
h h= - h 0.353D 3D g , which is much larger in magnitude
than the midplane value. For this estimate we assumed
Hg= hgR with hg= 0.05.

In Figure 15 we plot growth rates for the above example
under ideal MHD conditions with ò= 0.01 and St= 0.1. As
expected, the MRI is excluded from geometric considerations,
but the atmosphere is unstable to the Alfvén wave SI with
maximum growth rates ;0.03 Ω, which may lead to turbulent
activity. However, the DSI also operates off of the midplane
(Squire & Hopkins 2018b; Krapp et al. 2020), but is neglected

here. How the DSI interacts with the Alfvén wave SI, or how it
is affected by magnetic fields, is beyond the scope of this work.

6.9. Caveats and Outlook

In the shearing box formalism, the effect of the radial
pressure gradient from the global disk is treated through the
constant parameter, h. We therefore cannot model pressure
bumps as a whole. The persistence of the SI with h  0 only
indicates instability localized to regions of vanishing pressure
gradients, for example near the center of a pressure bump. A
proper stability analysis of pressure bumps requires a variable
h h= ( )  x . For consistency with global disks, one may also need
a variable magnetic torque, Ff= Ff(x). These generalizations
inevitably result in a global eigenvalue problem, i.e., ordinary
differential equations in x. This should be tackled in a future
study.
Our results demonstrate the potential importance of the

azimuthal drift between dust and gas, especially in disks
torqued by a laminar magnetic field. According to RDI theory,
nonaxisymmetric disturbances may grow from a resonance
between the azimuthal drift and neutral waves in the gas, for
example, Rossby waves (Pan & Yu 2020). This hypothetical
RDI is excluded in our axisymmetric models but should be
investigated and compared with the axisymmetric, azimuthal-
drift-driven SI discussed in this work (which is not an RDI).
However, nonaxisymmetric modes may not grow exponentially
in the shearing box due to differential rotation (Johnson &
Gammie 2005), so a radially global or cylindrical treatment
would be more appropriate.
We have only considered ohmic resistivity as the sole

nonideal MHD effect. For passive fields, this is not a limitation
since only the effective body force, FR,f, acting on the gas is
relevant, regardless of how it arises. For live fields, however,
one should also consider ambipolar diffusion and the Hall
effect, which may, in fact, dominate the midplane of PPDs (see
Lesur 2021, and references therein). The Hall effect leads to
qualitatively new phenomena such as whistler waves and the
Hall-shear instability (Kunz 2008); while ambipolar diffusion
can make unstable modes with kx≠ 0 dominant (Kunz &
Balbus 2004). The present work should be generalized to study
how dust interacts with these modes and instabilities.
Finally, our results are based on the fluid approximation of

dust grains. However, in some calculations, we find modes
with high frequency or growth rates such that |στs|O(1),
which may put the fluid treatment into question (Jacquet et al.
2011). Ultimately, our results need to be checked against
particle-gas simulations (e.g., Johansen & Youdin 2007).

7. Summary and Conclusions

In this paper, we study the stability of dusty, magnetized
PPDs. We are mainly motivated by recent models of PPDs that
highlight the dominant role of large-scale magnetic fields in
driving disk accretion (e.g., Gressel et al. 2015; Bai 2017;
Béthune et al. 2017) and how this would affect planetesimal
formation through the SI (Youdin & Goodman 2005; Johansen
& Youdin 2007). We apply standard linear-stability analyses
and verify key results with direct MHD simulations includ-
ing dust.
We extend previous local shearing box models of the SI to

account for large-scale magnetic stresses from the global disk,
which is treated as a constant, passive torque that modifies the
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equilibrium dust and gas drift velocities. Here, we find the
magnetic torque primarily induces an azimuthal drift between
dust and gas, which becomes important in regions where the
global radial pressure gradient, h, is small. This results in
instability even when h  0 (in which case the classic SI of
Youdin & Goodman ceases to operate). The existence of
azimuthal-drift-driven SIs suggests that pressure bumps in
accreting disks remain viable sites for accelerated planetesimal
formation.

We also consider how a live magnetic field interacts
dynamically with dust. Under ideal MHD we find the radial
drift between dust and gas can destabilize Alfvén waves at
sufficiently high wavenumbers. However, these modes are
likely overwhelmed by the MRI and therefore may be of
limited relevance to realistic PPDs, unless the MRI becomes
subdominant, for example in strongly magnetized disks. In
resistive disks, we find dust feedback can stabilize the MRI by
reducing the effective Alfvén speed of a dusty gas compared to
pure gas. Conversely, we find the classic SI can be stabilized by
magnetic perturbations, especially at low dust-to-gas ratios.
Whether clumping observed in simulations of dusty, magne-
tized gas can be directly attributed to the SI is, therefore, an
open question.

In a follow-up work, we will use numerical simulations to
explore the nonlinear evolution of the azimuthal-drift-driven
SI, as well as the classic SI and MRI in dusty, magnetized
disks.
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Appendix A
Global Steady State

We derive the global pressure profile in a steady-state disk
with velocity fields given by Equations (14)–(17) at each R. We
assume St and ò are both constants. Then the condition for a
constant mass flux in dust and gas is equivalent. From
Equation (14), the gas mass flux is

r h r r¢ =
D

W +
+ +
D W

f( ) ( ) 
RV R

F
R

2 St 2 St 1
. A1R g 2 tot g

2
K

2

2
K

g

From Equations (6), (7), and (12), we see that Ff∝ R−3/2/Rρg,
so the second term on the right-hand side is a constant. That is,
the magnetic torque induces a constant mass flux (see also
Equation (20)). We therefore require the first term to be
constant. This implies, using Equation (18) with (12), that
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are dimensionless constants and subscript “0” denotes evalua-
tion at R0. Using the definition of η (Equation (13)),
Equation (A2) is an ordinary differential equation for P,
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This can be integrated with the boundary condition P→ 0 as
R→∞ to give
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The corresponding gas density profile can be obtained through
r = P Csg

2 for an isothermal disk. Note that we require h > 0
to ensure P> 0 at all radii. This is satisfied in a thin, weakly
magnetized disk wherein η0 is ( )O hg0

2 and βf? 1.

Appendix B
Linearized Equations

We linearize Equations (22)–(26) assuming a uniform,
vertical background field, Bz (Case II). We define
W≡ δρg/ρg, Q≡ δρd/ρd, and d m r d= -( )b Bg0

1 2 . The result is

s d d= - - - ( )W ik v W ik v ik v , B1x x x x z z

sd d d

t t
d d

d d
n d

=- + W -

- - - + -

+ -
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( )( ) ( )
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w v W Q w v

iC k b k b

k v

2
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x x x x y x s

x x x x

Az z x x z

x

2

s s
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Figure 15. Unstable modes in a strongly magnetized disk atmosphere with
βz = 3 and grains with St = 0.1 and ò = 0.01. Modes with large wavenumbers
along the solid line correspond to Alfvén wave streaming instabilities. The
horizontal dashed–dotted line (Kz = π) is the minimum wavenumber for modes
to fit within a pressure scale height, which excludes the block of magneto-
rotational instability modes (in red) in the lower left.
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where = +k k kx z
2 2 2. Corresponding equations for Case I are

obtained by neglecting the magnetic field perturbations and the
linearized induction Equations (B5)–(B7). We reproduce the
ideal MRI and the classic SI in Figure 16. In
Equations (B2)–(B4) and (B8) we have included an optional
gas viscosity term,∝ ν, and a corresponding dust diffusion
term,∝D, which are set to αSSCsHg when employed. In
Section 4.2 we include both diffusion and viscosity, whereas in
Section 6.2 and Appendix C we only include diffusion.
Elsewhere, neither effects are included.

Appendix C
Reduced Model for the SI Driven by Azimuthal Drift

We find that the SI can operate without pressure gradients, in
which case it is driven by the azimuthal drift between dust and
gas (Section 4.2). Here, we seek to verify this azimuthal-drift-
driven SI. We consider the setup for Case I, i.e., a purely

hydrodynamic model with the magnetic field only modifying
the background drift speeds.
First, we note that this new instability can operate even when

Kz= 0 (contrary to the classic SI, which requires Kz≠ 0;
Youdin & Goodman 2005). Henceforth we consider Kz= 0.
Second, as compressibility is negligible in all of the modes
examined, we replace the gas continuity equation with the
incompressible condition, ∇ · v= 0. Then the linear perturba-
tions satisfy kxδvx+ kzδvz= 0. Hence for kz= 0 the gas has no
radial motion, δvx= 0. Incompressibility also means letting the
gas density perturbations W→ 0 but Cs→∞ , such that the
enthalpy perturbation d ºh C Ws

2 remains finite and is
determined from the gas’ radial momentum equation. Further-
more, the linearized vertical momentum equations for gas and
dust can be satisfied with δvz= δwz= 0. We include dust
diffusion but ignore gas viscosity.
The linear eigenvalue problem now only involves the gas’

azimuthal momentum equation and the dust’s continuity and
horizontal momentum equations. In the limit considered, these
can be written as

st m d d d+ = - + -( ) ( ) ( ) ( ) v w v Q w v , C1y y y y ys g

st m t d+ + = -~( ) ( )D Q ik w , C2x xs d s
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st m d d d d+ = - + -( ) ( )w w v w
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2
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These give the dispersion relation
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Figure 16. Left: the standard magneto-rotational instability in a pure gas disk with βz = 104 in the ideal magneto-hydrodynamic limit. Middle: classic streaming
instability (SI) in an unmagnetized disk with ò = 3 and St = 0.1. Right: similar to the middle panel but with ò = 0.2. In the SI panels the dotted curves correspond to
the resonant drag instability condition given by Equation (40).
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and recall ζy is the dimensionless azimuthal drift
(Equation (34)). The full dispersion relation is a quartic in σ

and its direct solutions are unwieldy.
To proceed, we assume modes are slow such that

st∣ ∣ ( ) min 1,s . We also specialize to the case where radial
drift is negligible compared to the azimuthal drift, for example
near a pressure extremum (h  0), and set μg; μd. We
assume m∣ ∣ ( ) min 1,d , which can be satisfied for suffi-
ciently small St at fixed Kx. The dispersion relation then
reduces to

st m st m
z

+ + + +
+
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+
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This quadratic equation for στs+ μd, and hence σ, can be
solved readily.

C.1. Explicit Solutions without Dust Diffusion

When dust diffusion is negligible (D= 0), a further
simplification can be made in the limit St2= |μd|, which means
Kx cannot be too small. The term∝ St2 in Equation (C7) can
then be neglected. Seeking growing solutions, we find

st m
z

+
+
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The growth rate and oscillation frequency are then
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(Recall that we defined σ≡ s− iω.) We see from
Equation (C9) that instability is directly powered by azimuthal
drift. Furthermore, for azimuthal drifts driven entirely by the
magnetic torque, we have ζy∝ St (Equation (34) with h = 0),
thus µs St . Note that both s and ω are unbounded with
increasing Kx, but this limit eventually violates the assumption

of small |μd| and |μg| used to derive Equations (C9)–(C10). In
any case, the fluid approximation probably breaks down when
|στs| 1 (Jacquet et al. 2011).
In Figure 17 we test the above model by comparing it with

the solution to the full eigenvalue problem. We compute
unstable modes with Kz= 0 in disks with h = 0, βf= 10, and
Λf= 10−3 (or αM= 0.0125), for a range of stopping times.
The analytic model (Equation (C7)) accurately reproduces the
growth rates, while the fully analytic solutions (Equation (C9))
work best for small St, large Kx, or both.

C.2. Physical Interpretation

The origin of the instability can be examined through the
linearized Equations (C1)–(C4). Under the same approxima-
tions as that used to derive Equation (C8), without diffusion we
have

d d= ( )w w2St , C11x y

t
st m

d= -
+

( )Q
ik

w . C12x
x

s

s d

The gas and dust azimuthal equations can be combined to give

st m d d d+ + = - -( )( ) ( )  
w v w v Q w

St

2
,y y y y xs d

where we have approximated μg; μd. From Equation (C11) it
is clear that if St2= |μd|, then the last term on the right-hand
side can be neglected. Finally, for tightly coupled dust we
expect δvy; δwy. Hence,

st m d+ + = -( )( ) ( ) ( ) w w v Q1 . C13y y ys d

One can readily check that Equations (C11), (C12), and (C13)
yield the explicit dispersion relation Equation (C8).
The instability mechanism can now be read from

Equations (C11), (C12), and (C13). Suppose the dust
experiences an azimuthal acceleration, moves outward and is
slowed down by gas drag (Equation (C11)). Then the local dust
density increases (Equation (C12)), which can be seen by
inserting Equation (C8) to give Q∝ (1− i)δwx with a positive
proportionality constant. For ζy> 0 this increases the feedback
onto the gas that accelerates it in the azimuthal direction as

Figure 17. Streaming instability in disks without pressure gradients (h = 0) but including a magnetically induced accretion flow with a dimensionless Maxwell stress
of αM = 0.0125. No viscosity or diffusion is used (ν = D = 0). Solid curves are computed from the full eigenvalue problem, the circles from the analytic model
(Equation (C7)), and the dashed curve is the fully analytic solution (Equation (C9)). The dust-to-gas ratio is ò = 3. Three Stokes numbers are shown: St = 0.1 (black),
St = 10−2 (red), and St = 10−3 (blue). Modes have no vertical structure, Kz = 0.
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δwy∝ (1+ i)Q, but for tightly coupled dust the latter is dragged
along (Equation (C13)). This leads to a positive feedback and
hence instability.

C.3. Effect of Dust Diffusion

We briefly examine the influence of dust diffusion. Figure 18
shows growth rates for αSS= 10−9, 10−8, and 10−7. As
expected, diffusion reduces growth rates and sets a minimum
scale of instability, which increases with αSS. The analytic
model (circles) reproduces results from the full eigenvalue
problem with slight deviations at large Kx. This is not
surprising since the model assumes sufficiently
small m µ∣ ∣ Kxd .

Appendix D
Single-fluid Model of a Magnetized, Dusty Gas

Our numerical results show the disappearance of classic SI
modes with large kz as one increases Λz, even when Λz= 1
(Section 4.4, e.g., the bottom left two panels in Figure 8). This
is curious because, for large kz, ohmic diffusion should render
magnetic fields ineffective. To check this result, we analyze a
one-fluid model of a dusty, magnetized gas following the
framework developed by Laibe & Price (2014). We assume the
gas is incompressible (∇ · v= 0) and ρg is constant. We neglect
gas viscosity and dust diffusion.

In the single-fluid approach, one works with the total density

r r rº + ( ), D1g d

and the center of mass velocity

= + ( )u v wf f , D2g d

where fg= 1/(1+ ò) is the gas fraction and fd= ò/(1+ ò) is the
dust fraction. We define the dust–gas drift asΔu≡ w− v. Then
v= u− fdΔu and w= u+ fgΔu.

For sufficiently small grains, dust follows the gas with a
correction from the differential force between dust and gas. In
our case, this arises from pressure gradients and Lorentz forces
that only act on the gas. As a result, dust grains drift relative to

the gas with

t
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h
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D3s
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(Johansen & Klahr 2005; Fromang & Papaloizou 2006). For
clarity, we have dropped the subscript zero to indicate
evaluation of η, R, and Ω at the reference radius R0.
Equation (D3) is also known as the terminal velocity

approximation (TVA; Youdin & Goodman 2005; Lovascio &
Paardekooper 2019). While the TVA simplifies the modeling of
dusty gas considerably, its shortcomings were recently
analyzed by Pan (2021), where it was shown that the TVA
underestimates linear growth rates when ò= 1, kz? kx, or
both, and is particularly significant at resonant wavenumbers
(i.e., those satisfying Equation (40))—regimes that we will
consider below. The remedy to the TVA’s deficiency involves
additional contributions to Δu; see Pan (2021) for details. We
leave this to future work and proceed with the caution that the
following discussion is aimed at capturing qualitative effects,
rather than producing a quantitative replacement of the two-
fluid treatment.
The gas incompressibility condition, dust continuity

equation, and the center-of-mass momentum equation for the
dust–gas mixture are
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See also Lin (2021, Appendix B) for the case of a
compressible, unmagnetized gas. Strictly speaking, one should
express the induction equation in terms of u and Δu. We
neglect this complication and set v→ u in Equation (24), so the
induction equation retains the form as in the two-fluid model;
see Fromang & Papaloizou (2006) for a similar treatment. This
approximation is applicable when fd= 1, but to connect to

Figure 18. Similar to Figure 17 but for fixed St = 0.1 and three levels of dust diffusion: αSS = 10−9 (blue), 10−8 (red), and 10−7 (black). No gas viscosity is included.
Solid curves are computed from the full eigenvalue problem and the circles from the analytic model (Equation (C7)).
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hydrodynamic results, we shall not take this formal limit until
later. The equilibrium disk consists of ux= uz= 0,
uy=− ηrΩ2fg and constant P, ρ, ò. The initial magnetic field

= ˆB zBz with a constant Bz. We ignore passive magnetic
torques, so this setup corresponds to Case II discussed in the
main text.

D.1. Dispersion Relation

The linearized one-fluid equations are

d t d
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where h= W R f2 2
g and s s h= + kO

2. We have also used
∇ · δB= 0 in Equation (D7). The last two terms in
Equation (D7) reflect the tendency for dust to concentrate

at maxima in the total pressure. These equations yield the
dispersion relation
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Recall the effective Alfvén speed = + C C 1Az A,eff .
When Bz→ 0, only the first term survives, which is
equivalent to the dispersion relation for the SI as derived
by Lin & Youdin (2017, their Equation (97)); see also
Jacquet et al. (2011). Lin & Youdin argued that the term
fdτsσ

4 should be neglected to avoid spuriously growing
epicycles, although recently Jaupart & Laibe (2020) and Pan
(2021) showed that epicycles can indeed be unstable.
Nevertheless, we neglect this term to focus on classic SI
modes. When τs → 0, Equation (D15) is equivalent to the
dispersion relation for the MRI in resistive, gaseous disks
(Sano & Miyama 1999, their Equation (22)) with the Alfvén
speed reduced by perfectly coupled dust.
We now make further simplifications. We assume Bz≠ 0,

large resistivity (Λz= 1), and consider modes with kz? kx.
Then kz/k; 1 and s h kO z

2. Note that ηO is parameterized
through Λz and CAz in the pure gas limit (Equation (31)).
In terms of the dimensionless frequency s s= Wˆ ,

Figure 19. Streaming instability growth rates in effectively unmagnetized disks (Λz = 0, red) compared to magnetized disks (Λz > 0, black). The disk parameters are
βz = 104, h = 0.05, and St = 0.1. Modes have fixed Kz = 104. Solid lines are obtained from the full equations, while circles are obtained from the reduced dispersion
relation Equation (D16). Dust-to-gas ratios from top to bottom: ò = 3, 0.2, and 0.01.
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Equation (D15) reduces to
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In Figure 19 we compare the SI growth rates obtained from
Equation (D16) to those from the full treatment. We take
βz= 104, h = 0.05, St= 0.1, and consider ò= [0.01, 0.2, 3]
with increasing Λz for larger ò as the impact of magnetic fields
is smaller in dustier disks. For ò< 1 and Λz= 0, the persistence
of instability at Kx 200–300 in the analytic model is an
artifact of the TVA (Pan 2021). Introducing Λz> 0 leads to a
reduction in growth rates but is overestimated by the analytic
model. The analytic model does improve with smaller ò: for
ò= 0.01 the cut-off at Kx; 90 is similar to the full model
(Kx; 100).

For completeness, we present a dust-rich case in Figure 19
with ò= 3, which is actually inconsistent with taking the
center-of-mass velocity in the induction equation. Despite this,
the analytic model performs well for Kx 300, including the
slight drop in growth rates as Λz increases. In fact, for Λz= 1,
analytic growth rates are similar to the full model for all Kx

values considered. The full model shows that growth rates for
Kx 50 decrease with Λz, while growth rate increase for
50 Kx 300. On the other hand, the analytic model always
predicts an increase for Kx 300. Resolving these discrepan-
cies probably requires accounting for dust–gas drift in the
induction equation.

D.2. Magnetic Stabilization of the Classic SI

We can evaluate s¶
¶L L =

ˆ

0z
z

to examine the effect of

introducing magnetic perturbations to the SI. Note that for
large resistivity and Kz we do not expect complications from
the MRI as it should remain suppressed. Denoting the solution
in the limit of Λz→ 0 as ŝ*, we have
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We make use of series solutions for ŝ* (in St) as developed by
Youdin & Goodman (2005), Jacquet et al. (2011), and Jaupart
& Laibe (2020). In terms of dimensionless variables and for
Kz? Kx, Equations (28)–(29) of Jacquet et al. (2011) give

s h h= - - -ˆ ( )( )[( )( ) ]
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 * K f f f K f f f f i2 St 2 St St .

D18

x xg d g g d g d

We finally set fd= 1 so fg; 1 and specialize to radial
wavenumbers such that z =K 1x x

2 2 . Recall from Equation (33)
that ζx is the dimensionless radial drift. According to RDI
theory, at this Kx the resonant Kz→∞ ; see Equation (40).
These regimes are also where magnetic stabilization is most
apparent in Figure 8. Then h =K2St 1x and s = +ˆ* f iStd .

Inserting these into Equation (D17), we find the growth rate
s=ˆ ( ˆ )s Re decreases with increasing Λz,
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St 0, D19
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where we have used fdSt= 1. Both finite drag and feedback are
necessary for magnetic stabilization ( fdSt≠ 0) in the limits
considered.

Appendix E
Pseudo-energy Decomposition

Following Ishitsu et al. (2009) and Lin (2021) we construct a
pseudo-kinetic energy associated with a linear mode from
Equations (B2)–(B4) and (B9)–(B11):
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are contributions from pressure forces, dust–gas drag, and
magnetic forces, respectively. We further decompose U2:
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We associate U2x and U2y with the radial and azimuthal drifts in
the background, and U2δ with the relative drift in the perturbed
velocities. Note that U2δ is always stabilizing.

Appendix F
Code Tests

To test our finite-difference code used in Section 5, we first
reproduce the classic SI eigenmodes LinA and LinB, as
described in Youdin & Johansen (2007), and summarized in
Table 1. For this test the magnetic field is switched off.
Figure 20 shows the evolution of the maximum dust density
perturbation in the domain, which shows a good agreement
between the growth measured in the simulation and the
expected growth rate calculated from linear theory. We remark
that for LinB the measured growth rate in δρd is slightly higher
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than the theoretical value, but for δwz we do measure the same
growth rate of s= 0.0154 Ω as in linear theory.

Similarly, we reproduce the standard magneto-rotational
instability with a purely vertical field in Figure 21. For this test
we disable the dust component and set h = 0. We fix βz= 100 ,
Kx= 0, and choose the most unstable =K 5 15 2z

( =K 3 2z ) in the ideal (resistive cases) according to linear
theory. For ideal MHD we obtain a linear growth rate of 0.75 Ω
as expected. For the nonideal case, we set Λz= 0.1 and obtain a
growth rate of 0.074 Ω, which is close to the analytic value of
0.75ΛzΩ in the limit Λz= 1 (Sano & Miyama 1999).
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