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Abstract

Observations of bright protoplanetary disks often show annular gaps in their dust emission. One interpretation of
these gaps is disk–planet interaction. If so, fitting models of planetary gaps to observed protoplanetary disk gaps
can reveal the presence of hidden planets. However, future surveys are expected to produce an ever-increasing
number of protoplanetary disks with gaps. In this case, performing a customized fitting for each target becomes
impractical owing to the complexity of disk–planet interaction. To this end, we introduce Disk Planet Neural
Network (DPNNet), an efficient model of planetary gaps by exploiting the power of machine learning. We train a
deep neural network with a large number of dusty disk–planet hydrodynamic simulations across a range of planet
masses, disk temperatures, disk viscosities, disk surface density profiles, particle Stokes numbers, and dust
abundances. The network can then be deployed to extract the planet mass for a given gap morphology. In this
work, first in a series, we focus on the basic concepts of our machine learning framework. We demonstrate its
utility by applying it to the dust gaps observed in the protoplanetary disk around HL Tau at 10, 30, and 80 au. Our
network predicts planet masses of 80M⊕, 63M⊕, and 70M⊕, respectively, which are comparable to those from
other studies based on specialized simulations. We discuss the key advantages of our DPNNet in its flexibility to
incorporate new physics as well as any number of parameters and predictions, in addition to its potential to
ultimately replace hydrodynamical simulations for disk observers and modelers.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Protoplanetary disks (1300);
Exoplanet astronomy (486); Neural networks (1933)

1. Introduction

In the past few decades, exoplanet surveys using multiple
techniques have revealed that planets are essentially ubiquitous
throughout the galaxies (Cassan et al. 2012; Batalha et al. 2013).
Their distribution in sizes and diversity with regard to masses,
radii, and composition (e.g., Winn & Fabrycky 2015; Fulton
et al. 2017) have put constraints over planet formation theories;
for more details, see reviews by Johansen et al. (2014) and
Raymond & Morbidelli (2020). However, with the current planet
search methods (Fischer et al. 2014), it is often difficult to detect
planets around young stars. Planet signatures like spectra and/or
light curves from such systems are faint due to enhanced stellar
activity in young stars and the presence of protoplanetary disk
(hereafter PPDs). Thus, most discovered exoplanets are old
(∼103Myr), with few detections of young planet candidates in
systems <10Myr old (e.g., Yu et al. 2017; Keppler et al. 2018).
This limits our ability to constrain the demographics of young
planets, particularly during their formation epoch in PPDs. An
alternative and/or indirect method to probe the unseen younger
population of exoplanets is needed, as that is key to testing
planet formation theories.

In this work, we introduce a novel state-of-the-art scheme that
uses artificial intelligence (machine learning techniques) to infer
properties of young, undetected planets from observed features
in PPDs. Our idea is motivated by recent high-resolution
observations (e.g., Andrews et al. 2018; Clarke et al. 2018;
Huang et al. 2018a; Huang et al. 2018b; Long et al. 2018; Pérez
et al. 2018; Liu et al. 2019) revealing complex—possibly planet-
induced—features in PPDs with unprecedented precision. Near-
infrared imaging with the Atacama Large Millimeter Array
(ALMA) has provided a plethora of resolved images of PPDs
showing detailed substructures like rings and distinct gaps in

systems like HL Tau, as shown in Figure 1 (ALMA Partnership
et al. 2015; Yen et al. 2016). Other such systems include HD
169141 (Momose et al. 2015), HD 97048 (van der Plas et al.
2017), and TW Hya (Andrews et al. 2016; Huang et al. 2018c).
The origins of such rings and gaps, although debated

extensively, are broadly categorized into those caused due to disk
physics and chemistry and those due to disk–planet interaction.
Disk-specific mechanism include zonal flows associated with
magnetorotational instability turbulence (e.g., Johansen et al. 2009;
Simon & Armitage 2014), secular gravitational instability (Youdin
2011; Takahashi & Inutsuka 2014), condensation of molecular
species leading to growth and fragmentation of dust around various
snowlines (e.g., Zhang et al. 2015; Pinilla et al. 2017), self-induced
dust pile-ups (Gonzalez et al. 2015), gap opening by large-scale
vortices (Barge et al. 2017), etc.
An alternative explanation, and the one that is of interest to us,

is that these gaps are induced by embedded young planets due to
their dynamical interactions with the disk (Dipierro et al. 2016;
Rosotti et al. 2016; Dong & Fung 2017). Although disk–planet
interaction has long been predicted, (Goldreich & Tremaine
1980; Lin & Papaloizou 1993), direct observational evidence has
only come recently (Pinte et al. 2019, 2020), as it relies on
careful kinematic measurements. On the other hand, annular dust
gaps are readily observed global features and thus offer a
promising indirect method to detect planets. To this end, a model
constraining planet properties from gap features is key to the
exploration of the unseen young exoplanet population.
It should be noted that gap and ring formation due to planet–

disk interaction and that due to disk processes are not mutually
exclusive. For example, snowlines can favor planetesimal
formation (Drażkowska & Alibert 2017) by acting as dust traps.
In this case, ring formation at the snow line (Morbidelli 2020)
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results in planet formation, which can then induce planet gaps
and rings. It is also possible that planet and non-planet gap/ring
formation processes occur in the same disk at different radii.
However, including additional gap/ring formation processes is
beyond the scope of this work. Our model assumes that planet–
disk interaction dominates over other mechanisms.

1.1. Identifying Young Planets from Gap Profiles

In this paper, we focus on predicting planet masses from
observed, axisymmetric disk gaps in dust emission. For each
gap, there are at least two measurable parameters: its depth and
width. The depth is the contrast between the undepleted
background and the minimum intensity inside the gap, and the
width is defined as the radial extent between the inner and outer
edge of the gap (e.g., Dong & Fung 2017; Clarke et al. 2018;
Long et al. 2018).

Both gap depths and widths have been modeled extensively
using analytical and numerically approaches (e.g., Crida et al.
2006; Paardekooper & Papaloizou 2009; Duffell & Macfadyen
2013; Fung et al. 2014; Duffell 2015; Kanagawa et al.
2015a, 2016). However, instrumental limitation (i.e., lack of
sensitivity resulting in poor signal-to-noise ratio) often makes it
hard to constrain gap depths observationally (Zhang et al. 2018).
Thus, gap widths are often considered a better alternative to
constrain planet mass (Duffell & Macfadyen 2013).

Recently, Lodato et al. (2019) used a simple empirical relation
(hereafter the Lodato model) to infer planet masses from observed
gap widths. They assumed the dust gap width =w kRd H, where k
is the proportionality constant and ( )=R M M R3H P

1 3
0* is the

planet’s Hill radius, R0 is its orbital radius, and MP,* are the planet
and stellar masses, respectively. This gives
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Lodato et al. (2019) assumed a value of k=5.5 by averaging
results from hydrodynamical simulations of CI Tau and MWC
480. While the simplicity of this model is appealing, it does not
account for the fact that gap profiles also depend on disk

properties (Crida et al. 2006; Paardekooper & Papaloizou
2009).
A more sophisticated approach was taken by Kanagawa et al.

(2016). They ran multiple two-dimensional (2D) hydrodynamic
simulations to model gap opening in gaseous disks for relatively
massive planets (0.1MJ–2MJ) and derived an empirical formula
(hereafter the Kanagawa model),
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to relate planet masses and gas gap widths, wg. This relation also
depends on the disk’s local aspect ratio h0 and dimensionless
viscosity parameter α.
A limitation of the Kanagawa model is that it requires gap

widths in gas emission, which do not coincide with observed
dust gaps unless particles are strongly coupled to the gas
(Dipierro et al. 2016). Moreover, low-mass planets can open up
dust gaps only, with negligible effect on the gas profile
(Dipierro et al. 2016; Rosotti et al. 2016). As will be shown
later, using dust gaps instead of gas gaps in Equation (2) leads
to an overestimation of planet masses when applying the
Kanagawa model.
In order to infer planet masses from dust gaps directly, one

typically needs to match observations with customized dusty
disk–planet simulations (e.g., Dipierro et al. 2015; Clarke et al.
2018), which introduces at least two more parameters: the strength
of dust–gas coupling (or particle size) and dust abundance (or
metallicity). Furthermore, as disk models improve, e.g., with
realistic thermodynamics (Miranda & Rafikov 2019, 2020), more
parameters become necessary to describe planet gaps precisely
and place tighter constraints on planet masses. Thus, it will
become impractical to perform complex disk–planet simulations
to match each observed target in future large surveys of PPDs.
We are therefore motivated to seek a generic, future-proof

procedure to model planet gaps. This calls for a method that
can encapsulate the multidimensional parameter space asso-
ciated with disk–planet interaction. In the era of big data, we
propose machine learning methods as a solution.

1.2. A Machine Learning Approach

In this article, we implement an efficient and quick-paced
method based on state-of-the-art machine learning (ML)
techniques. We build an ML model trained with explicit
planet–disk simulations, which require only a single definitive
run. Our ML model can then estimate planet masses given
parameters such as the dust gap width, the disk aspect ratio, disk
viscosity, disk surface density profile, metallicity, and parti-
cle size.
The advantage of this ML model is threefold. First, our model

can be used by observers as a tool to predict planet mass from
observed PPDs without running any simulations. Second, the
model is trained using synthetic data from numerical simula-
tions, hence the predicted mass is more accurate (i.e., closer to
the real one) than one obtained using simple empirical relations.
Third, our model can easily be extended to accommodate new
and improved physics. Doing so simply amounts to generating
new data using advanced simulations and adding relevant
variables to the ML algorithm.

Figure 1. ALMA continuum image of HL Tau (ALMA Partnership
et al. 2015). Synthesized beam is shown in the lower left. Adapted from
Dipierro et al. (2015).
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1.3. Paper Plan

The paper is organized as follows. We first describe the
disk–planet systems under consideration in Section 2. We then
explain, in some detail, the architecture of our artificial neural
network in Section 3 and how the data is preprocessed and the
network is trained to predict planet masses from gap profiles.
We present the predictions from our ML model in Section 4,
where we also compare its performance to previous empirical
approaches. In Section 5, we apply it to observed PPDs around
HL Tau and AS 209 to infer planet masses. We discuss
limitations and future prospects of our basic ML framework in
Section 6, and conclude in Section 7. Some technical details for
the training step are given in the Appendix.

2. Disk–Planet Interaction

The physical system of interest is a dusty protoplanetary disk
with an embedded, gap-opening planet. To model disk–planet
interaction using ML, we train the algorithm with a sample of
hydrodynamic simulations. Details of the training step are
presented in the next section. Here, we describe the physical
disk models, simulations, and notations for later reference.

2.1. Disk Model

We consider 2D, razor-thin disk models for simplicity.
Cylindrical coordinates (R, f) are centered on the central star of
mass M*. We place a planet of mass MP on a Keplerian circular
orbit at R=R0 and do not consider planet migration. We adopt a
rotating frame with the planet and include the planet’s indirect
potential. We use dimensionless units such that G=R0=
M*=1, where G is the gravitational constant. We quote time
in units of the planet’s orbital period p= WP 20 K0, where
W = GM RK

3
* is the Keplerian frequency and subscript 0

denotes evaluation at R=R0.
The disk has an initial gas surface density profile given by:
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where Σg0=10−4 (in code units) and σ is the exponent of the
density profile. We neglect the disk’s gravitational potential as
our models have Toomre parameters Q080 (see Section 3.2),
which is well above that required for gravitational stability
(Toomre 1964).

We consider locally isothermal disks with a fixed sound-speed
profile ( ) = Wc R h Rs 0 K, where the disk’s local aspect ratio h0 is
taken to be a constant, which corresponds to a non-flared disk. The
(vertically integrated) gas pressure is then given by = SP cs

2
g. We

include viscous forces to mimic possible turbulence in the gas disk
using the standard α-prescription (Shakura & Sunyaev 1973), such
that the kinematic viscosity n a= Wcs

2
K. We assume constant α.

We also consider a single population of dust particles modeled
as a pressureless fluid (Jacquet et al. 2011), which is valid for
Stokes numbers º WS t 1st K , where ts is the stopping time
characterizing the strength of dust–gas coupling (Weidenschilling
1977). For simplicity, we assume a constant Stokes number,
which was found to maintain better numerical equilibrium and
behavior near the disk boundaries than a fixed particle-size
approach. The dust fluid is initialized with a surface density
S = Sd g, where ò is the constant (global) dust-to-gas ratio. The
reference dust surface density is S = Sd0 g0. The backreaction
from the dust drag onto the gas is included.

The dusty disk is initialized with steady-state drift solutions
given by Equations (70)–(73) of Benítez-Llambay et al. (2019),
which assumes a constant Stokes number.

2.2. Hydrodynamic Simulations

We simulate the above dusty disk–planet systems with the
FARGO3D hydrodynamics code (Benítez-Llambay&Masset 2016).
FARGO3D can be run on Graphics Processing Units (GPUs),
achieving large speed-ups compared to Central Processing Units
(CPUs). For instance, each of our simulation takes approximately
∼12 GPU hr compared to ∼72 hr on a single CPU core. This
advantage, together with the GPU clusters at ASIAA and the
National Center for High-Performance Computing in Taiwan,
enabled us to run a large number of simulations (∼103) necessary
to generate the required training data within a reasonable time.
Our computational domain is R ä [0.4, 2.5]R0 and fä[0,

2π], and are discretized with 512×512 uniformly spaced
cells. Periodic boundaries are applied in f and the radial
boundaries are set to their initial (equilibrium) solutions. We
also apply wave-killing zones near the disk edges (de Val-
Borro 2006) where the disk is relaxed toward its initial state.
The planet is introduced from the beginning of the simulation.
We use a constant softening length of rs=0.6h0R0 for the
planet’s potential.

2.3. Parameter Space

We mainly focus on low-mass planets because they are more
difficult to observe directly, which makes our ML method more
useful (Lodato et al. 2019). To this end, we consider planetary
masses ranging from MP=8M⊕ to MP=120M⊕ around a
1Me central star. We consider a range of values for disk aspect
ratios h0ä[0.025, 0.1], viscosity parameters [ ]a Î - -10 , 104 2 ,
and power-law slope of the surface density profile σä[0.05,
1.2]. The value of σ affects the dimensionless pressure gradient

( ) ( )h sº µ - +h d P d R h2 ln ln 10
2

0
2 , which controls the

radial drift of dust (Benítez-Llambay et al. 2019). For each
disk, we consider one dust species characterized by (fixed)
Stokes numbers [ ]Î - -S 10 , 10t

3 1 and abundance òä[0.01,
0.1]. These values of St roughly translate to a physical radii of
dust particles (or pebbles) ranging from ∼1 mm to ∼10 cm,
assuming an internal grain density of 1 g cm−3 and gas surface
density 100 g cm−2. The parameter space is summarized in
Table 1.
Each simulation is allowed to evolve for 3000 orbits or about

∼1Myr at 45 au around a 1Me star. The time is adequate for
most models to reach a quasi-steady state. For some, the gaps
have not fully settled; however, they are still relevant, as they
have evolved for an appreciable fraction of the gas disk
lifetime.

Table 1
Parameter Space for Hydrodynamic Simulations

Name Notation Max. Min.

Planet mass in Earth masses MP/ M⊕ 120 8
Disk aspect ratio h0 0.100 0.025
Disk surface density profile σ 1.2 0.05
Disk viscosity parameter α 10−2 10−4

Global dust-to-gas ratio ò 10−1 10−2

Particle Stokes numbers St 10−1 10−3

3

The Astrophysical Journal, 900:62 (12pp), 2020 September 1 Auddy & Lin



3. Implementation of Deep Neural Network

The last few years have seen a growth in the use of machine
learning, a branch of artificial intelligence, in diverse domains
to solve complex real-world problems. In particular Deep
Learning (LeCun et al. 2015), a subfield of ML, has been the
main driving force behind breakthroughs in image classifica-
tion (Krizhevsky et al. 2012), speech recognition (Chorowski
et al. 2015), text classification (Yang et al. 2016), and more
recently, self-driven (autonomous) cars (Grigorescu et al.
2019). Deep Learning allows machines to identify patterns in
data using neural networks to perform tasks like detection,
classification, regression, segmentation, etc. In this work, we
are interested in building a neural network and applying it to a
regression problem (see Goodfellow et al. 2016; Alibert &
Venturini 2019) in astronomy. The task of our neural network
is to learn from input variables (also called features) like gap
width, disk aspect ratio, disk viscosity, disk surface density
profile, dust abundance, and particle size observed in PPDs to
predict a target variable (called label) planet mass. In the next
section, we discuss the structure and the working principle of
the network.

3.1. Setting up the Network

A neural network consists of multiple layers of neurons or
perceptrons; for a review, see Schmidhuber (2015). Each neuron
performs a simple task via forward propagation, meaning the
process of generating output flows in one direction from the
input layer to the next layer. A neuron accepts a set of inputs and
the corresponding weights. It then passes the linear combination
of the inputs through a nonlinear activation function to generate
an output. The first layer of the network takes as input the
features and the last layer gives (predicts) a target variable that is,
ideally, close to the true value. The middle layers are also called
the hidden layers, as the states in them are not directly enforced,
unlike the input and the output layer. The hidden layers accept
the outputs from the previous layer and feed their results into the

next layer. A network is said to be deep when it has more than
one hidden layer.
We design a deep neural network, the Disk Planet Neural

Network (DPNNet), to model planetary gaps using a multilayer
perceptron. Figure 2 gives a schematic representation of our
DPNNet, with two hidden layers, an input layer (yellow) with
six feature variables, and an output layer with one target
variable. Our network is trained using simulation data to
predict the target variable, the planet mass. The training process
works iteratively, whereby the weights of all linear combina-
tions of all neurons are adjusted at each step to get the best
agreement between the predicted and the actual value. The
matching between the actual and the predicted values is
quantified by the cost function, the mean square error (MSE). It
is defined as

( ) ( ) ( )å= -
=

C a
N

M M
1

, 4
n

N

1
P,predicted,n P,simulation,n

2

where N is the sample size, MP,simulation,n is the true planet mass
used in the simulation, MP,predicted,n is the value predicted by the
neural network, and a are the weights. The gradient of the cost
function is computed using the chain rule for derivatives, known
as backpropagation (Goodfellow et al. 2016). The cost is then
minimized iteratively using gradient descent (Ruder 2016). After
each iteration, the weights are updated until an optimal value is
reached.
In our DPNNet, each hidden layer has 128 units of neurons.

They are fully connected, as each unit of a layer is linked to
each unit of the previous and the next layer. We use the ReLU
activation function (Nwankpa et al. 2018) to introduce
nonlinearity for each unit. The network is trained using the
RMSprop optimizer (Ruder 2016) with its parameters set to
default values. We select a learning rate of 0.0001. The
network dimensions are arrived through a series of trial-and-
error tests by varying the number of layers and units per layer.
A lower validation loss indicates a better model. Thus, we

Figure 2. Schematic diagram of the DPNNet using a fully connected multilayer perceptron. First layer (in yellow) takes as input six feature variables. Output layer (in
red) gives the planet mass as a target variable. Two hidden layers in the middle (in blue) have 128 units of neurons each. Each neuron performs a simple task via
forward propagation, as illustrated in the magnified panel. It finds the linear combination of inputs (weighted sum) and then passes this through a ReLU activation
function to generate an output. The network is trained using RMSprop optimizer. More details are given in Section 3.
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begin by increasing the size of the layers or adding new layers
until we get diminishing returns on the validation loss. We
further implement L2 regularization (Ng 2004), with a
coefficient of 0.0001, and early stopping to mitigate overfitting.

3.2. Data Acquisition

The parameter space for the disk–planet simulations are
sampled using the Latin hypercube sampling (McKay et al.
1979; Iman et al. 1981) method. We generate a uniform
random distribution of the parameters, with each value centered
within the sampling intervals. We ran a total of 1100
simulations across the range of input parameters described in
Section 2.3. Example simulations are shown in Figures 3–4 and
discussed in more detail below. We analyze the data from each
simulation and measure the width of the gap/gaps opened by
the embedded planet in both the dust and gas profiles.

Our simulations show that, for various parameter combina-
tions, a planet can induce multiple but adjacent gaps/rings in
the dust (Dong et al. 2017). We thus broadly classify our
simulations into two categories: (a) one deep, broad gap as seen
in simulations A and B in Figure 3; and (b) two gaps adjacent
to a planet (see panel C in Figure 3). To account for case (b),
we simply define two dust gap widths for each simulation, wd1
and wd2, but set =w 0d2 if only a single dust gap is formed.
There are are some simulations that open secondary gaps away
from the planet (Bae et al. 2017; Miranda & Rafikov 2019).

However, we exclude such simulations from our training set as
we do not have enough samples to effectively train our models
to consider secondary gaps.
Following Kanagawa et al. (2016), we measure the dust gap

width as the radial distance between the inner Rd,in and outer
Rd,out edge of the dust gap where the dust surface density Σd

reaches a predefined threshold fraction of Σd0, respectively.
Thus, the first dust gap width is given by

( )=
-

w
R R

R
, 5d1

d1,out d1,in

0

where R0 is the planet’s orbital radius, as illustrated in Figure 3.
We use similar definitions for the second dust gap width wd2 (if
it exists) and the gas gap width wg (see Figure 4). For
measuring the dust and gas gap widths, we adopt a threshold
fraction of 1/2 of the initial surface density for easy
comparison with the Kanagawa model (Kanagawa et al.
2016). One limitation with this definition of wd is that it fails
for shallow gaps (associated with low-mass planets) when the
depletion is less than the threshold fraction. However, one can
choose any threshold fraction or implement another definition
of the gap width. In that case, the DPNNet will be trained using
those numbers.
Figure 3 illustrates a subset of simulation outputs from the

training set. The top panel shows the dust surface density at the
end of 3000 orbits for three independent runs with distinct

Figure 3. Top panel is the normalized dust surface density distribution after 3×103 orbits for different planet masses and different disk initial conditions. Disk
parameters for each model are indicated on the top right of each plot. Bottom panel is the radial profile (red line) of the azimuthally averaged surface density for each
simulation. Horizontal arrow represents the widths w w,d1 d2 of the gap(s). Gap width is the distance between the inner and the outer edge of the gap (vertical dotted
lines) where Σd(R) reaches 50% of the initial surface density Σd0 shown in dotted blue line. Cross indicates the minimum surface density Σdmin.
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planet masses and different disk initial conditions (shown on
the upper right corner). Simulations A, B, and C have
embedded planets of masses MP=16M⊕, MP=33M⊕, and
MP=79M⊕, respectively. The bottom panel is the corresp-
onding radial profile of the azimuthally averaged surface
density. The extents of the dust gap widths wd are shown by the
horizontal arrows.

Figure 4 shows the gas gap surface density and one-dimensional
radial profile for the same models as in Figure 3. Gas gaps are
much smoother and less deep compared to their dust counterparts.
The gas gaps mainly fall into category (a), i.e., one gap around the
planet, according to the above gap classification scheme. As is
evident, gas gap profiles and features are vastly dissimilar,
compared to dust gaps.

Figure 3 highlights the fact that the variation in the gap
profiles due to planet–disk interaction, which is complex and
nonlinear, remains present even in the simple empirical
relations of Equations (1)–(2). For instance, even though the
embedded planet in simulation B is heavier (×2.1) compared to
simulation A, they both have comparable dust gap width. This
is likely due to the differences in the ambient disk initial
conditions: for example, simulation B has a higher (×1.2)
aspect ratio and lower viscosity (×0.1 ) compared to simulation
A. Furthermore, in simulation C, a planet of mass MP=79M⊕
carves a double dust gap of category (b), possibly due to even
lower viscosity, a = ´ -8.57 10 4, compared to simulation A
and B.

The initial data set consisted of 1100 simulations. The data is
preprocessed to eliminate runs that do not open up detectable

gaps or have secondary gaps. After the initial screening, we
have data from 976 simulations. In addition to the input run
parameters ( a s M h S, , , , ,P 0 t ), each simulation is also
associated with gap width(s) in both dust (wd1, wd2) and gas
(wg). However, the gas gap width will only be used for
comparison with other empirical models (Section 4.2), and is
not part of our ML model. Table A1 gives the distribution of
the parameters of the raw data set and the processed data set
after the filtering.
For building our ML model, we assign each simulation a set

of feature variables ( a sw w S h, , , , , ,d1 d2 t 0 ) and a target
variable (or label), here the planet mass MP. For each feature
variable, the data is normalized using the standard scaling (z-
score) by removing the mean and then scaling it by the standard
deviation. Note that feature and target variables need not
correspond to simulation input parameters and output measure-
ments, respectively. We are free to assign feature and target
variables to fit the application, which in our case is to predict
planet masses. It would be straightforward to add, remove, or
swap variables to predict other quantities.

3.3. DPNNet Training

The DPNNet is implemented using the Google TensorFlow
(Abadi et al. 2015), which is an open-source platform for
machine learning. The data are randomly split into two blocks:
80% of them used for training and validation, and the
remaining 20% for testing. This is crucial because we want
to test our model on data that it has not previously seen or been

Figure 4. Same as Figure 3, but for gas surface density Σg.
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trained with. The training set is fed into our DPNNet and the
weights are adjusted iteratively until they are optimized (see
Section 3.1 for details). The validation set is used to check the
general performance of DPNNet (e.g., to avoid overfitting). In
Figure A1, we plot the training and the validation loss, the
MSE, as a function of training epoch for the DPNNet. As is
evident, the validation loss gradually decreases and starts to
flatten after 600–700 epoch, whereas the training loss is still
decreasing, indicating overfitting. Thus, we implement early
stopping and stop the iterations around 800 epochs. In the next
section, we apply our trained network to predict planet mass.

4. Results

Once the training process is complete, the DPNNet (with
optimized weights) is ready to be deployed to predict planet
mass from observed disk. We initially test the network’s
performance by applying it to the test data set. This allows us to
quantify the network’s overall accuracy in predicting planet
mass from unseen data. We also compare our networkʼs
prediction with other empirical relations and discuss its
advantages.

4.1. DPNNet Prediction

The test data set consists of feature variables along with the
true planet mass. The feature variables are normalized with
same distribution that the network has been trained on. It is
then fed to the trained DPNNet to predict the planet mass.
Figure 5 illustrates the correlation between the predicted and
the simulated planet mass in Earth-mass (M⊕) units for all the
test samples. The predicted mass (red diamonds) lies along the
blue line, indicating a close correlation. We estimate the error
( -M MP,simulation P,predicted) between the predicted and the
simulated mass. It is normally distributed with a mean (μ)
and a standard deviation (σE) of 0.8M⊕ and 12.5M⊕,
respectively. The model performance is evaluated using
standard metrics such as the root mean square error (RMSE)
and the mean absolute error (MAE). The DPNNet has an
RMSE of 12.5M⊕ and an MAE of 7.9M⊕ when applied to the
test data set.

Furthermore, to lower the bias associated with data
sampling, we apply k-Fold cross-validation resampling process
using scikit-learn (Pedregosa et al. 2011). Instead of using a
single RMSE, we take the average of the RMSE obtained from
each of the fivefold resampling process. We get a mean RMSE
of 13.0M⊕. This can be regarded as the prediction uncertainty
of our network. Given our limited sample size and wide
parameter space, the model error is moderate, particularly
toward the high-mass end of our parameter space. The network
performance can be further improved by using more compre-
hensive data. However, doing so is beyond the scope of
this work.
In the next section, we compare DPNNet with both the

Kanagawa (Kanagawa et al. 2016) and the Lodato model
(Lodato et al. 2019).

4.2. Model Comparison

We apply the Kanagawa and Lodato models along with
DPNNet to the test data set to generate planet masses and
compare it with simulated values. This is done as follows. Each
run in the test data set is associated with some combination of
(MP, α, h0, σ, St, ò, wd1, wd2, wg). ThisMP is the simulated planet
mass. The Lodato model (Equation (1)) takes a dust gap width
as the sole input to predict a planet mass, in which case we use
wd1. Similarly, we only use ( )aw h, ,g 0 for input in the
Kanagawa prediction (Equation (2)). Finally, our DPNNet
takes ( )a s h S w w, , , , , ,0 t d1 d2 as input to predict a pla-
net mass.
Figure 6 shows the simulated planet mass (blue star) and

predicted planet mass using the Kanagawa model1 (cyan
hexagons). The Kanagawa planet masses are comparable to
the simulated values with an RMSE of 18.2M⊕. While the
Kanagawa model performs reasonably well toward the higher-
mass end, one caveat is that it requires gap widths measured in

Figure 5. Correlation between the predicted planet mass (in units of M⊕) using
DPNNet and the simulated planet mass used in the numerical simulations. Figure 6. Predicted planet mass from DPNNet using (α, h0, σ, St, ò, wd1, wd2) as

input and Kanagawa model using ( )aw h, ,g 0 for input are plotted as a function
of gas gap width wg, aspect ratio h0, and viscosity α as given in Equation (2).
Vertical error bars are prediction uncertainty associated with the network (see
Section 4.1). Blue markers are the simulated mass (MP,simulation) of the planets.

1 In applying the Kanagawa model, we select only those simulations that have
a measurable gas gap.
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gas emission. This may limit its application, as observed gap
profiles are mostly from dust emission. One would then first
need to estimate gas gap widths, which can introduce large
uncertainties (Zhang et al. 2018).

On the other hand, our DPNNet takes as input dust gap
widths (a more direct observable) along with other disk
features. The DPNNet-predicted planet masses are indicated in
red diamonds in Figure 6. The vertical error bars represent the
uncertainty (±13.0M⊕) in the predicted mass. The RMSE for
the DPNNet is 12.1M⊕. Our DPNNet predictions have
substantially reduced bias and produce better fits compared to
the Kanagawa model.

Figure 7 makes a more direct comparison between models. It
shows the predicted MP from dust gap widths and disk
parameters as a function of actual planet mass. An exact
prediction would lie on the blue line. The black triangles are the
predicted masses from the Kanagawa model, but using the dust
gap width instead of the gas gap width (setting w wg d1 in
Equation (2)). These are an order of magnitude above the blue
line, which shows that using dust gap widths in the Kanagawa
models leads to significant overestimates in planet mass. The
orange squares are the planet masses inferred using the Lodato
model. We rescale the proportionality constant k in Equation (1)
to adjust for the different way we measure the gap width
compared to Lodato et al. (2019). Using the training data set, we
fit the measured dust gap width wd1 to ( )´k M M3P

1 3
* , where

MP,* are the simulated planet and stellar mass, and we obtain
k=18.4. The estimated masses deviate considerably from
actual simulated values both in the low- and high-mass end. The
orange histogram on the right denotes the distribution of the
error in the Lodato model. It follows a normal distribution with
μ=−7.4M⊕ and σE=31.2M⊕.

On the other hand, the Kanagawa model using gas gap
widths (cyan hexagons; Equation (2) without modification)
typically underestimates planet masses, although it performs
better at the high-mass end. The cyan histogram on the right
follows a normal distribution with μ=−12.7M⊕ and
σE=13.1M⊕. The peak of the histogram is considerably
shifted from the center, indicating a negative bias in its
estimate. In contrast, the mass predicted using the DPNNet lies
along the blue line, indicating a much closer correlation than
other models. Thus, our DPNNet outperforms both empirical
relations when applied to the test data set. The error follows a
normal distribution (red histogram) with μ=−1.2M⊕ and
σE=12.0M⊕.

5. Application to Observations

As a first application of our newly developed DPNNet, for
planet gaps, we estimate planet masses responsible for opening
the dust gaps observed in the protoplanetary disks around HL
Tau and AS 209. Our findings are summarized in Table 2 and
discussed below.

5.1. HL Tau

We apply our DPNNet to the HL Tau disk, which shows
clear evidence of axisymmetric gaps in dust thermal emission
(ALMA Partnership et al. 2015). Several studies using
hydrodynamic simulations suggest such rings are due to
disk–planet interaction (Dipierro et al. 2015; Dong et al.
2015; Jin et al. 2016). Assuming that each gap is created by a
single planet, we use the properties of the observed gap as input
features (see Table 2) for our ML model to predict the planet
mass responsible for carving out each gap. For instance, the

Figure 7. Left: Comparison between the planet mass predicted using different models and the simulated planet mass. DPNNet-predicted mass lies along the blue line,
indicating close correlation with the true mass. Black triangles are the masses predicted based on the dust gap width using Kanagawa models, i.e., setting w wg d1 in
Equation (2). The Kanagawa models overestimate the planet mass. Orange squares are the masses inferred from Lodato models (Equation (1)). They deviate
considerably from the simulated values both in the low- and high-mass ends. The masses inferred (cyan hexagon) from the Kanagawa model using gas gap widths
(Equation (2) without modification) are marginally below the blue line near the low-mass end, indicating underprediction. Right: Distribution of the prediction error
( -M MP,simulation P,predicted) for Kanagawa, Lodato, and DPNNet with (μ=−12.7M⊕, σE=13.1M⊕), (μ=−7.4M⊕, σE=31.2M⊕), and (μ=−1.2M⊕,
σE=12.0M⊕), respectively.
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disk aspect ratios and gap widths for three identified gaps at
R=10, 30, and 80 au in HL Tau are obtained from Kanagawa
et al. (2015b, 2016). Those were estimated for an assumed
spectral index β=1.5, using optical depth and the gas
temperature from the brightness temperatures in ALMA Bands
6 and 7. We set the viscosity α=10−3 (Dipierro et al. 2015), a
central star mass M*=1Me, and a canonical value of the
dust-to-gas ratio ò=0.01 (ALMA Partnership et al. 2015;
Dong et al. 2015). The Stokes number is on the order of
10−2

–10−3 around the three gaps (Dong et al. 2015). For
simplicity, we adopt St=0.005. Our DPNNet predicts the
planet mass in gaps at 10, 30, and 80 au as 80, 63, and 70M⊕,
with an uncertainty of ±13M⊕. These masses correspond to
0.25, 0.20, and 0.22MJ.

These estimates are in excellent agreement with the planet
masses inferred from direct numerical simulations. For
instance, Dong et al. (2015) and Jin et al. (2016) generated
synthetic images using three-dimensional Monte Carlo Radia-
tive Transfer and hydrodynamical simulations of disk–planet
systems to compare with observations. Dong et al. (2015)
established that three planets each of mass 0.2MJ were
responsible for the gaps in HL Tau. Jin et al. (2016) found
three embedded planets with masses 0.35, 0.17, and 0.26MJ in
the gaps. Furthermore, three-dimensional dusty smoothed
particle hydrodynamics calculations by Dipierro et al. (2015)
yield comparable masses of 0.20 and 0.27MJ in the two inner
gaps, and a larger 0.55MJ mass planet in the outer gap.
However, these inferred planet masses (from our DPNNet and
specialized simulations), particularly at the inner gap, differ
considerably from the Kanagawa model (Kanagawa et al.
2016). They predicted planet masses of 1.40MJ, 0.20MJ, and
0.5MJ at 10 au, 30 au, and 80 au, respectively, using the dust
gap widths. This may be because the Kanagawa model often
overestimates planet mass when applied to dust gap width (see
Section 4.2).

5.2. AS 209

AS 209 is another interesting system with multiple gaps at 9,
24, 35, 61, 90, 105, and 137 au (Guzmán et al. 2018; Huang
et al. 2018a) surrounding a central star of mass M*=0.83Me.
Zhang et al. (2018) established, using numerical simulations, that
a single planet of mass ∼27M⊕ (MP=10−4M*) at R∼100 au
in a α ; 10−5 disk (with radially varying α) can produce all five

of the gaps at 24, 35, 62, 90, and 105 au. The disk aspect ratio
h0∼0.05–0.06 was constrained using the distance between two
dominant gaps at R=61 and 100 au. Zhang et al. (2018) also
suggested that the innermost gap at 9 au hosts a second planet.
Furthermore, Fedele et al. (2018) used customized 3D hydro-
dynamical simulations of planet–disk interaction to establish that
a single planet of ~M M0.7P Saturn (~ ÅM67 ) at R∼103 can
open up the two gaps detected at 62 and 103 au.
However, the DPNNet is not explicitly trained for systems

where multiple (>2) gaps are induced by a single planet. Thus,
for simplicity, when applying it to AS 209, we only consider
the planet-harboring gaps at R=9 and 99 au and ignore the
others. The potential effect on the predicted mass due to this
approximation is likely to be within the model uncertainty.
Advance application considering the influence of these
subsidiary gaps will be implemented in future improvements.
As input to our network, we adopt disk parameters and dust gap

widths2 from Zhang et al. (2018). While Zhang et al. (2018)
include a range of values for dust abundance, particle size, and
disk viscosity, we consider those that are within our parameter
space (Table 1). For example, we select St=30×5.23×
10−4 and α=10−4 for both the gaps. Next, for the innermost
gap at R=9 au, the other selected parameters are wd1=0.42,
ò=0.012, and =h 0.040 . For the gap at R=99 au, we have
wd1=0.31, ò=0.017 and =h 0.080 . We set surface density
profile σ=1 (Fedele et al. 2018) for both the gaps. The feature
variables are summarized in Table 2.
The DPNNet predicts planet masses of 39M⊕ and 45M⊕

(±13M⊕) in 9 au and 99 au gaps, respectively. These masses
correspond to 0.13 and 0.14MJ. Our estimates, particularly at
R=9 au, are lower compared to Zhang et al. (2018) values, as
they find masses of 0.37MJ and 0.18MJ at 9 au and 99 au,
respectively, for the same disk parameters. The discrepancy
could be partially because Zhang et al. (2018) measured gap
widths differently than us and also we did not consider the
effects of subsidiary gaps. Furthermore, the disk parameters
adopted from them are likely to be uncertain.
Given the simplicity of our setup, the limited parameter

range, and the small sample size used in our training set, our
DPNNet performs remarkably well, as its predictions are

Table 2
Inferred Planet Masses from Gaps in HL Tau and AS 209

Observed Features DPNNet Other Models

Name M* Rgap wd1 h0 α St ò σ0 Mp0 Mp1 Mp2 Mp3 Mp4 Mp5 Mp6

(Me) (au) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ)
±0.04MJ

1.00 10 0.81 0.05 10−3 0.005 0.01 1.0 0.25 1.40 0.20 0.35 0.20 L L
HL Tau 1.00 30 0.23 0.07 10−3 0.005 0.01 1.0 0.20 0.20 0.20 0.17 0.27 L L

1.00 80 0.29 0.10 10−3 0.005 0.01 1.0 0.22 0.50 0.20 0.26 0.55. L L

AS 209 0.83 9 0.42 0.04 10−4 0.016 0.01 1.0 0.13 L L L L 0.37 L
0.83 99 0.31 0.08 10−4 0.016 0.02 1.0 0.14 L L L L 0.18 0.21

Notes. MP0 is the mass inferred using DPNNet, from input features ( )a sw h S, , , , ,d1 0 t given in column 4–9 and setting wd2=0. MP1 is the mass predicted by
Kanagawa et al. (2016) using the empirical relation. MP2, MP3, and MP4 are the masses obtained using the customized simulation of HL Tau by Dong et al. (2015), Jin
et al. (2016), and Dipierro et al. (2015) respectively. MP5 is the planet mass in AS 209 inferred by Zhang et al. (2018). MP6 is the planet mass found by Fedele et al.
(2018), using specialized simulations of AS 209.

2 Note that Zhang et al. (2018) define the gap width differently than us. This
is likely to introduce additional uncertainty in the predicted planet mass.
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consistent with specialized models and simulations, which were
exclusively customized to reproduce selected observations.

6. Discussion

We introduce an ingenious multidisciplinary technique that
combines computational astrophysics with deep learning (using
neural networks) to characterize unseen exoplanets from
observed disks. Deep neural network learns the underlying
relationship in a set of data via training. In our case, it maps the
connection between the planetary gaps in dust and the complex
disk–planet interaction. This enables our DPNNet to directly
estimate planet masses from observed dust gap width and disk
features.

Previous analytic scaling relations that can infer planet mass
from gas surface density are often limited, as PPDs are mostly
detected in dust emission. Using these empirical relations
requires one to estimate gap profiles in gas from dust
continuum flux, which is uncertain and prone to large errors
(Zhang et al. 2018). While customized disk–planet simulations
for modeling specific PPDs have been successful, this approach
may not be efficient in dealing with multiple targets in a large
survey. Thus, machine learning, more specifically deep
learning, provides an alternative way that is much more
accurate and definitive in characterizing unseen exoplanets
from observations of PPDs.

The key to a well-trained network is a comprehensive data
set that reflects the underlying connection between the input
features and the output (target) variables. This necessitates the
inclusion of data that incorporate not only a broad parameter
space but also capture the diverse disk morphologies due to
disk–planet interaction. However, as the first paper in a series,
we have only explored a limited range, due to finite resources.
This restricts the scope of our network, as discussed below.

6.1. Network Limitations

The network is trained with limited data generated using
idealized 2D hydrodynamical simulations. Our limited sample
size for the training set affects the network performance,
resulting in higher uncertainty in its prediction. For example,
our optimized network has an uncertainty of ±13.0M⊕, which
corresponds to 11% error even for the most massive planet in
our parameter space. The relative uncertainty is much higher at
the low-mass end. Runs resulting in complex morphologies
such as secondary/tertiary gaps have to be excluded, as we do
not have enough samples to successfully train the network to
identify them.

Furthermore, we only consider gaps opened by a single
planet in a narrow mass range (8M⊕�MP�120M⊕). These
allow for smoother gap profiles, which are easier to
characterize, compared to massive ones, as those are likely to
induce eccentric gaps (Papaloizou 2002; Kley & Dirksen 2006)
and have vortices at gap edges (Koller et al. 2003; Li et al.
2005; de Val-Borro et al. 2007). This further prevents the
application of the network to disks harboring massive planets.

We only measure the gap widths (wd) after 3000 orbits,
whence the majority of the simulations have settled into a
quasi-steady state. Here, an improved approach would be to
measure the gap profiles as a function of time as well, such that
our network learns to identify the variations due to time
evolution in the observed gap. This would then allow one to

relax the assumption that the observed system has reached a
steady state, and use the system age as another input parameter.
Our idealized 2D simulations can also be improved. For

instance, a fixed particle-size approach in place of a constant
Stokes number, adopted here for better numerical behavior,
would be a more physical model for dust–gas interaction
(Weidenschilling 1977).
Previous work showed that the vertically integrated gap

structure in gas is similar between 2D and three-dimensional
(3D) simulations (Fung & Chiang 2016). Furthermore, solids tend
to settle into a thin dust layer around the disk midplane. Thus, we
do not expect the relation between dust gap profiles and planet
masses, as identified by our DPNNet based on 2D simulations, to
differ significantly from that trained with 3D simulations.
Nevertheless, 3D disk models should be considered in the future,
as these can also account for disk and planet inclinations, which
cannot be captured in 2D. At present, the cost of 3D simulations
likely prohibits one from obtaining a sufficiently large training set.
However, if this can be overcome, then one only needs to retrain
our DPNNet for application to 3D disks.

6.2. Future Prospects

Our DPNNet demonstrates a simple but powerful application
of deep learning in constraining the mass of hidden exoplanets.
With more realistic simulations and a larger training data set,
the network can possibly be used to characterize additional
properties like gas surface densities and gap depths from
observed PPDs. Improved and new physics can be accom-
modated by adding more variables to the training set, as far as
the neural network is concerned. In the future, with the
emergence of more powerful computers, it will be possible to
have adequate data to train the network with synthetic images
generated from 3D radiative transfer and hydrodynamical
simulations, allowing fast and direct comparisons between
models and observations. This will potentially make the
network versatile enough to entirely replace hydrodynamical
simulations for observers and modelers.

7. Conclusions

In this paper, we design a deep neural network, DPNNet, to
estimate the mass of a planet from the dust gap it opens in a
protoplanetary disk. The important takeaways are summarized
as follows:

1. The DPNNet can directly infer planet mass from gap
width observed in dust emission and other disk features.
It takes as input dust gap widths, gas disk properties
(aspect ratio, viscosity, surface density profile), and dust
properties (abundance, Stokes numbers) from observa-
tions and estimates the embedded planet mass.

2. In contrast to previous empirical models (e.g., Dong et al.
2015; Kanagawa et al. 2016; Lodato et al. 2019), the
DPNNet additionally accounts for changes in the predicted
planet mass due to variation in dust abundance, Stokes
number, and disk surface density profile.

3. The DPNNet is applied to a test data set to evaluate its
effectiveness. The DPNNet-predicted mass is closely
correlated with the true planet mass. Our current model
uncertainty is 13M⊕, but this can be improved in the
future with a larger training set.

4. We deploy our DPNNet to infer planet masses from the
dust gaps observed in the protoplanetary disks around HL
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Tau and AS 209. We find planet masses of 80M⊕,
63M⊕, and 70M⊕ in gaps at 10 au, 30 au, and 80 au,
respectively, in the HL Tau disk. Similarly, for the AS
209 disk, we infer embedded planet masses of 39M⊕ and
45M⊕ at the 9 au and 100 au gaps, respectively. These
estimates are in close agreement with results from other
models based on specialized disk–planet simulations. The
results are summarized in Table 2.

We thank the anonymous referee for constructive comments.
This work is supported by the Ministry of Science and
Technology of Taiwan (grant number 107-2112-M-001-043-
MY3). Numerical simulations were performed on the TIARA
cluster at ASIAA, as well as the TWCC cluster at the National
Center for High-performance Computing (NCHC). We are
grateful to the NCHC for computing time, facilities, and support.

Appendix

Table A1 gives the statistical distribution of the simulation
data set before and after the screening. The raw data set
corresponds to the data from the entire 1100 simulations. The
filtered data set is obtained after the initial cut to remove runs
that do not open up detectable gaps or have more that two gaps.
While the variables (MP, α, h0, σ, St, ò) are the input parameters
for the simulations, the dust gaps width are measured from the
dust density profile from the simulation outputs. Figure A1
shows training and the validation loss, the MSE, as a function
of training epoch for the DPNNet. As is evident, the validation
loss gradually decreases and starts to flatten after 600–700
epoch, whereas the training loss is still decreasing indicating
over fitting. We implement early stopping and stop the
iterations around 800 epochs.

Figure A1. Training and validation loss as a function of training epoch for the DPNNet for computation of the planet mass.

Table A1
Distribution Statistics of Parameters for the Simulation Data

Raw Data Filtered Data

Name Notation Max. Min. Mean Std Max. Min. Mean Std

Planet mass in Earth masses MP/ M⊕ 120.0 8.1 64.2 32.4 120.0 8.2 66.8 31.5
Disk aspect ratio h0 0.099 0.025 0.040 0.011 0.091 0.025 0.038 0.009
Disk surface density profile σ 1.20 0.05 0.54 0.29 1.20 0.05 0.53 0.29
Disk viscosity parameter α (×10−3) 10 0.11 5.03 2.86 10 0.13 5.13 2.77
Global dust-to-gas ratio ò 0.10 0.01 0.05 0.03 0.10 0.01 0.05 0.03
Particle Stokes numbers St 0.100 0.001 0.051 0.029 0.10 0.001 0.053 0.028
Dust Gap 1 wd1 0.94 0.00 0.67 0.22 0.94 0.10 0.74 0.11
Dust Gap 2 wd2 0.69 0.00 0.03 0.09 0.47 0.00 0.02 0.07

Note. Raw data (N = 1100) correspond to the simulation data set. Filtered data (N = 976) are obtained after the initial screening (see Section 3.2 for details).
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