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Abstract

The observed substructures, like annular gaps, in dust emissions from protoplanetary disks are often interpreted as
signatures of embedded planets. Fitting a model of planetary gaps to these observed features using customized
simulations or empirical relations can reveal the characteristics of the hidden planets. However, customized fitting
is often impractical owing to the increasing sample size and the complexity of disk–planet interaction. In this paper
we introduce the architecture of DPNNet-2.0, second in the series after DPNNet, designed using a convolutional
neural network (CNN, specifically ResNet50 here) for predicting exoplanet masses directly from simulated images
of protoplanetary disks hosting a single planet. DPNNet-2.0 additionally consists of a multi-input framework that
uses both a CNN and multilayer perceptron (a class of artificial neural network) for processing image and disk
parameters simultaneously. This enables DPNNet-2.0 to be trained using images directly, with the added option of
considering disk parameters (disk viscosities, disk temperatures, disk surface-density profiles, dust abundances,
and particle Stokes numbers) generated from disk–planet hydrodynamic simulations as inputs. This work provides
the required framework and is the first step toward the use of computer vision (implementing CNNs) to directly
extract the mass of an exoplanet from planetary gaps observed in dust surface-density maps by telescopes such as
the Atacama Large Millimeter/submillimeter Array.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Convolutional neural networks
(1938); Neural networks (1933); Protoplanetary disks (1300)

1. Introduction

Exoplanet surveys using different techniques (Butler et al.
2017; Deeg & Alonso 2018; Hojjatpanah et al. 2019) have
revealed a remarkable variety of planets and planetary systems
throughout the Galaxy (Cassan et al. 2012; Batalha et al. 2013).
With more than 4000 confirmed detections, and an even larger
number of detected objects awaiting confirmation, we have a
rich sample of data characterizing the demographics of
exoplanets. However, most of these discovered exoplanets
are much older (∼103 Myr). To get a complete picture of the
planet formation processes and their formation environments
(Raymond & Morbidelli 2020) it is imperative to constrain the
distribution of sizes and diversity in radii, composition, and
mass (e.g., Winn & Fabrycky 2015; Fulton et al. 2017) of
young planets including those at their formation stage.

However, with current search techniques (Fischer et al.
2014; Lee 2018) it is particularly challenging to detect young
planets embedded within their natal disk. The spectral
characteristic and the light curves from such systems are too
faint compared to the emission from the young host star and the
protoplanetary disk (hereafter PPDs). Thus, direct detection in
the visible and infrared spectrum from Hα (Cugno et al. 2019;
Zurlo et al. 2020), or thermal emission from the gradually
cooling planets embedded within the disks, are rare as well as
difficult. These factors add up to severely limit the detection of
young exoplanets during their formation epochs.

An alternative approach is to search for indirect influences/
signatures of these unseen planets on the physical structure of
the PPDs induced by disk–planet interaction. Theoretical

models have long predicted disk–planet interactions (Goldreich
& Tremaine 1980; Lin & Papaloizou 1993) resulting in spiral
features and/or annular gaps in gas and dust density
distribution (Lin & Papaloizou 1986). However, it is only
recently that high-resolution observations in submillimeter
interferometry using the Atacama Large Millimeter/submilli-
meter Array (ALMA) and other facilities (for example
SPHERE, Gemini) have reported such complex—possibly
planet-induced—features with unprecedented precision (e.g.,
Andrews et al. 2018; Clarke et al. 2018; Dipierro et al. 2018;
Huang et al. 2018b, 2018c; Long et al. 2018, 2020; Pérez et al.
2018; Liu et al. 2019; van der Marel et al. 2019).
Near-infrared images from ALMA have revealed the

ubiquity of concentric rings and gaps in many observed
systems, like HL Tau (ALMA Partnership et al. 2015), TW
Hya (Andrews et al. 2016; Huang et al. 2018a), HD 97048 (van
der Plas et al. 2017), and HD 169141 (Momose et al. 2015).
There are many possible explanations for the formation of these
observed structures. Disk-specific mechanisms such as secular
gravitational instability (Youdin 2011; Takahashi & Inut-
suka 2014), magnetorotational instability (MRI) turbulence
(e.g., Johansen et al. 2009; Simon & Armitage 2014), self-
induced dust pileups (Gonzalez et al. 2015), gap opening in the
dust spatial distribution due to large-scale vortices (Barge et al.
2017), and radially variable magnetic disk winds (Suriano et al.
2018) are some of the possible scenarios that can lead to the
formation of these substructures in a dusty disk. However,
perhaps the most popular interpretation is that these
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substructures are induced by gap-opening planets (Dipierro
et al. 2016; Rosotti et al. 2016; Dong & Fung 2017).

Recent detection of planetary signatures (velocity kinks)
using gas kinematic measurements (Pinte et al.
2018, 2019, 2020; Teague et al. 2018), particularly inside the
observed dust gaps, provide strong evidence in support of
planet-induced gaps. More so, direct detection of an accreting
planet, using Hα emissions, inside the gap/cavity of the
transition disk PDS-70 (Keppler et al. 2018; Wagner et al.
2018; Haffert et al. 2019) strengthens the idea of planetary
gaps. This further suggests that planets may form much earlier
than previously thought as most of these PPDs are relatively
young (<10Myr). This opens up a unique window to probe
unseen, young, and fully grown exoplanets by characterizing
substructures (particularly axisymmetric disk gaps) in PPDs
from dust emission.

Disk–planet interactions are studied extensively using
generic hydrodynamical simulations to reproduce dust dis-
tributions that are comparable with observations (Zhang et al.
2018). Planet-induced gap features, mostly width and depth,
are modeled both using numerical and analytic approaches
(e.g., Crida et al. 2006; Paardekooper & Papaloizou 2009;
Duffell & Macfadyen 2013; Fung et al. 2014; Duffell 2015;
Kanagawa et al. 2015; Ilee et al. 2020). In order to infer planet
properties (such as planet mass), one typically needs to match
observations with outputs from these customized dusty disk–
planet simulations. Each simulation is characterized using
multiple parameters, like local disk aspect ratio, disk density
profile, dimensionless viscosity parameter, particle size, and
dust abundance (or metallicity) along with the gap features of
gap depth and width. Furthermore, as the disk models improve
with the inclusion of additional physics, like migrating planets
(Paardekooper et al. 2010; Meru et al. 2019), multiple gaps and
rings (Wafflard-Fernandez & Baruteau 2020), and improved
thermodynamics (Miranda & Rafikov 2019, 2020), more
parameters are necessary to set up the simulation. Thus, it
becomes impractical to perform disk–planet simulations
spanning such a large ever-increasing parameter space to
match each observed target in the current and future surveys of
PPDs. It is therefore essential to seek a generic, future-proof,
and accurate model for planet-induced gaps.

1.1. DPNNet-1.0

In Auddy & Lin (2020) (hereafter Paper I) we introduced
Disk Planet Neural Network (DPNNet), a deep-learning model
which predicts the planet mass from simulated/observed disk
properties. It outperforms simple analytic models (for exam-
ples, see Kanagawa et al. 2016; Lodato et al. 2019) in its ability
to encapsulate the multidimensional parameter space, which is
always a challenge with analytic relations. DPNNet was trained
with synthetic data, normalized using the standard scaling (z-
score) by removing the mean and then scaling it by the standard
deviation, generated from numerical simulations using the
FARGO3D hydrodynamics code (Benítez-Llambay et al. 2019).

DPNNet’s architecture consists of a fully connected multi-
layer perceptron (MLP), which takes inputs directly from the
user to predict the planet mass (see Figure 1 in Paper I). For
disks with observed gaps, one of the key input features is the
dust gap width. The specific way in which the gap widths are
measured (or the definition of gap width) varies somewhat
across the literature. In general, the gap width is defined as the
radial distance between the inner and the outer edge of the gap

where the surface density reaches a predefined threshold, ΣT. In
Paper I, consistent with Kanagawa et al. (2016), we set ΣT to
half of the undepleted initial surface density. This differs from
Dong & Fung (2017), where ΣT is geometric mean of the
undepleted and the minimum surface density, as well as Zhang
et al. (2018), where ΣT is the average of the peaks and the
minimum (gap) surface density. Similarly, different functional
forms were used by Clarke et al. (2018) (difference of two
logistic functions) and Long et al. (2018) (symmetrical
Gaussian) to fit the radial dust profile to measure the gap
width. Such variations limit the application of DPNNet,
requiring the network to be trained each time for different
definitions of gap width.
Additionally, DPNNet only considers the gap width, while

ignoring other morphological features like gap depth (Fung
et al. 2014), asymmetries such as vortices (de Val-Borro et al.
2007; Hammer et al. 2016, 2018), and spirals (Zhu et al. 2015).
Quantifying these features using user-defined probes can be a
complex task and further creates the scope for more
uncertainties. An advanced approach is to use computer vision
to initiate image-based characterization of the disk features.
This facilitates the extraction of complex nonlinear features
from images directly without explicit user interference, thereby
minimizing the associated errors.

1.2. Introduction to DPNNet-2.0

In this paper we introduce DPNNet-2.0, a deep neural
network model based on the convolutional neural network
(CNN) architecture, to predict mass of super-Earth to Saturn-
sized planets from simulated images of PPDs. Compared to
DPNNet (with MLP architecture) that requires users to measure
disk features from images, for instance obtaining the gap
widths as defined by the user, DPNNet-2.0 is an end-to-end
model that learns the linear and the nonlinear features directly
from the disk images. This minimizes biases associated with
different user-defined measurement probes. Additionally,
DPNNet-2.0 includes a complementary module that allows it
to accept disk parameters (feature variables) like disk aspect
ratio, disk viscosity, disk surface-density profile, metallicity,
and particle size in order to better constrain the disk properties.
This gives DPNNet-2.0 the flexibility to accept both images
and disk attributes simultaneously. As we will demonstrate in
this paper, the use of mixed data inputs improves the model
performance while trained on the same data set.

1.3. Paper Outline

The paper is outlined as follows. In Section 2 we describe
the disk–planet hydrosimulations as well as the parameter
space considered for the current study. We introduce the CNN
architecture implemented in DPNNet-2.0 along with the multi-
input module in Section 3 and discuss in detail the steps used to
preprocess the data. In Section 4 we present the prediction from
our trained DPNNet-2.0, based on simulated images, using
both the single and the multi-input module. Finally, in
Section 5 we discuss the limitations and future scopes.

2. Disk–Planet Simulations

We are interested in modeling the structural variations of the
dust surface density in a dusty protoplanetary disk due to an
embedded planet. We develop a machine-learning (ML)
algorithm to identify and classify these variations. Our ML
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model is trained using sample images generated from
hydrodynamic simulations of disk–planet systems. The details
of the ML model and the training step are given in the
following section. The physical disk model and the simulations
used to generate the training data are discussed in detail in
Paper I. However, for convenience of the reader we briefly
review the relevant details.

2.1. Disk Setup

We consider a razor-thin 2D disk with a nonmigrating planet
of mass MP placed at R= R0, on a circular Keplerian orbit
around a central star of mass M*. The planet’s orbital period
P0= 2π/ΩK0 is used as the unit of time, where

GM RK
3

*W = is the Keplerian frequency. The subscript 0
denotes evaluation at the planet’s location R0. We set
G= R0=M* = 1, where G is the gravitational constant, such
that the units are all dimensionless. The disk is initialized with
a gas surface-density profile given as
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in code units. The disk’s self-gravity is negligible as our
models are gravitationally stable with a Toomre parameter

800  . The disk is locally isothermal having a sound-speed
profile cs(R)= h0RΩK and a constant flaring index F, such that
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where H is the disk-scale height, and h0 is the aspect ratio at the
planet’s location R= R0. The disk turbulence is modeled using
the standard α prescription of Shakura & Sunyaev (1973),
where the kinematic viscosity cs

2
Kn a= W and α is a

constant.
We consider gas and dust simulations where the dust

particles are modeled as a pressureless fluid (Jacquet et al.
2011). The dust particles are parameterized using constant
Stokes numbers S≡ tsΩK, where the dust–gas coupling
(Weidenschilling 1977) is characterized using the stopping
time ts. The dust surface density is initialized as Σd= òΣg,
where ò is the constant dust-to-gas ratio. We include the dust
back reaction onto the gas.

2.2. Simulation Setup and Parameter Space

We use the FARGO3D hydrodynamic code (Benítez-Llambay
et al. 2019), running in a 2D cylindrical geometry (R, f), to
simulate the dusty disk–planet system. The grid is uniformly
spaced with 512× 512 discretized cells. The computational
domain spans from Rä [0.4, 2.5]R0 and f ä [0, 2π]. The radial
boundaries are set to their initial equilibrium solution while we
apply periodic boundary conditions in f. We damp waves
generated by the planet to zero near the boundaries using the
wave-killing module (de Val-Borro 2006) to avoid reflections
and interference with the disk bulk/morphology. The planet is
placed from the beginning of the simulation. We use a constant
softening length of rs= 0.6h0R0 for the planet’s potential. The
frame of reference rotates with the planet.

We consider the same parameter space, summarized in
Table 1, as used in Paper I. This enable us to compare the
relative performance between our previous ML model DPNNet
and the current improved CNN model DPNNet-2.0. We follow
each simulation for 3000 orbits which translates to about
∼1Myr at 45 au around a 1Me star. The range of Stokes
number considered here scale to particle radii ranging from
∼1 mm to ∼10 cm assuming gas surface density of 100 g cm−2

and an internal grain density of 1 g cm−3. We target super-
Earth to Saturn-sized planets, MP ä [8, 120]M⊕, as these are
comparatively difficult to detect using conventional methods,
thus making our deep-learning model widely applicable.

3. DPNNet-2.0

In this section we briefly introduce the CNN architecture and
its implementation in designing the DPNNet-2.0 model.
Further, we discuss the process of data acquisition, data
preprocessing, and DPNNet-2.0 training.

3.1. Convolutional Neural Network

A CNN is a type of feed-forward neural network consisting
of convolutional layers followed by fully connected layers
(Rawat & Wang 2017) that can be used for classification or
regression problems. Figure 1 shows a typical CNN architec-
ture along with the various layers within it. The crucial part of a
CNN architecture is the introduction of convolutional layers,
consisting of a set of neurons having shared weights. The
convolutional layer can be viewed as a layer consisting of
several neurons that analyses a small overlapping section of the
input image/data. This idea was first introduced by Fukushima
& Miyake (1982) and LeCun et al. (1998), where the
convolution operations were implemented in one or multiple
layers in addition to the fully connected layers in the end.
CNNs have one major advantage over MLP-based models.

Due to the weight sharing as well as the small kernels, the
system requirements for CNN is significantly reduced com-
pared to MLP (with fully connected layers) performing general
matrix multiplication. This opened up the possibility of
building faster, more cost effective, and deeper networks.
They can perform exceptionally well in extracting features
from an image (from low levels to higher levels) because of the
hierarchical learning, enabled by stacking several convolutional
filters having their own shared weights. These networks also
come with the advantage that they can automatically deal with
spatial translations (rotation and scaling as well with some
modifications).
Even though CNNs were initially designed to perform image

classification (Krizhevsky et al. 2017) or object detection

Table 1
Parameter Space for Hydrodynamic Simulations

Name Notation Max. Min. Mean Std

Planet mass in Earth
masses

MP/M⊕ 120.0 8.0 64.0 32.3

Disk aspect ratio h0 0.100 0.025 0.063 0.022
Disk surface-density
profile

σ 1.50 0.50 0.75 0.29

Disk viscosity parameter α (×10−3) 10 0.10 5.00 2.86
Global dust-to-gas ratio ò 0.10 0.01 0.06 0.03
Particle Stokes numbers St 0.100 0.001 0.051 0.029
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(Girshick et al. 2014), in recent times these are also used for
solving regression problems. This is implemented using a
linear layer following the fully connected layer in the end.
Using this approach, commonly known as vanilla deep
regression, state-of-the-art results are obtained in computer
vision regression problems (Toshev & Szegedy 2014; Bela-
giannis et al. 2015; Liu et al. 2016).

3.2. DPNNet-2.0 Architecture

DPNNet-2.0 uses a CNN architecture to predict planet mass
using features extracted from input images directly. We tested
the performance of DPNNet-2.0 with several well-established
2D CNNs such as AlexNet (Krizhevsky et al. 2017), VGG-16
(Simonyan & Zisserman 2014), ResNet (He et al. 2016), as
well as a vanilla CNN consisting of multiple convolution and
pooling (subsampling) layers followed by a nonlinearity (ReLU
in this case). Our findings suggest that ResNet performs
significantly better compared to the other CNN architectures
and the training time is much shorter as well (see Figure 9).
Based on this, the main analysis of this paper, as well as the
benchmarking, is done using ResNet as the CNN block of the
DPNNet-2.0 model.

The main reason for the superior performance of the ResNet
architecture is the use of “identity shortcut connections” that
enable the construction of deeper networks while reducing the
number of parameters. While AlexNet has 5 convolutional
layers, VGG-16 has 19 layers and ResNet50 has 50 layers.
Simply increasing the number of layers to built a deeper
network is burdened with the problem of a vanishing gradient,
making them harder to train. For the case of ResNet, stacking
several layers does not hinder the performance of the network
because of the presence of the identity mappings (empty layers
that do not do anything and just act as a connection between

two layers). Except for the first convolutional layer of the
ResNet architecture all other ones have a identity connection,
thus making them residual convolutional blocks. These
shortcuts or “skip connections” allow the direct back-propaga-
tion of the gradient to earlier layers. For DPNNet-2.0 we use an
Adam optimizer, instead of RMSProp as used in Auddy & Lin
(2020), as it performs better in incorporating the use of moving
average of previous gradients in order to accelerate learning
with inertia.

3.3. Multi-input DPNNet-2.0

Multi-input DPNNet-2.0 is designed as an end-to-end model
which can accept both images and disk features as inputs to
predict the planet mass. This is crucial, as in addition to images
each observed disk–planet system has its own physical
characteristics, like disk profile, temperature, viscosity, as well
particle size and metallicity. Thus, a complete model for planet-
mass prediction needs to be sensitive not only to the disk
morphology (observed from images) but also to the disk
properties which are measured separately.
This is achieved by developing an additional module that

combines the CNN-based architecture with the MLP network
implemented in Paper I. The MLP module is a fully connected
feed-forward neural network with two hidden layers, having
256 and 128 neurons, and an input layer with five feature
variables. Figure 2 gives the schematic of the network
architecture of the multi-input DPNNet-2.0.
The image and the disk features are processed independently

using the CNN and the MLP architecture in DPNNet-2.0,
respectively. The concatenated output from the two branches
serves as a input to a fully connected layers of neurons. Finally,
it passes through a linear activation regression head to output
the predicted planet mass. Note that we amend DPNNet (MLP

Figure 1. A schematic diagram showing a typical/vanilla CNN architecture along with the various hidden layers. It consists of multiple convolution and subsampling
(MaxPooling2D) layers followed by a nonlinearity (ReLU in this case). The characteristic feature of this architecture is the presence of a fully connected layer with
linear activation for performing regression. The feature maps, showing both high- and low-level features extracted by the convolutional filters, are shown in the
extended panels. The final output is the planet mass. Note that this schematic diagram is for illustration purposes only and the convolutional layers do not show the
ResNet50 architecture used in DPNNet-2.0. While the input and the output layers remain the same, the convolutional layers can be swapped with different CNN
architectures. For additional details see Section 3.2.
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model), such that it no longer requires a gap width as input, as
the gap features are characterized from the image directly by
the CNN. Only the disk initial conditions (α, h0, σ, St, ò) are
considered. This allowed us to remove the uncertainties
associated with DPNNet (user-defined gap-width measure-
ment) while retaining its flexibility.

3.4. Data Acquisition and Preprocessing

We use the Latin hypercube sampling (LHS; McKay et al.
1979; Iman et al. 1981) method to sample the parameter space
for initializing the disk–planet simulation. The LHS was
implemented using the PYDOE package to generate a uniform
random distribution of the parameters. Each parameter value
was centered within the sampling intervals. We ran 1200
simulations in total initialized using the above parameter space.
For each simulation we generate dust surface-density maps
after the system has evolved substantially and reached a quasi-
steady state. This corresponds to ≈2000 orbits of evolution for
most of our disk–planet simulation. Thus we generate dust
density maps from 2400, 2600, 2800, and 3000 orbits of
evolution. Thereby, for each simulation we have images from
four time instances resulting in a total of 4800 unique images
for 1200 distinct simulations. This gives us a much larger
sample size, which is necessary for better optimization of
the CNN.

Figure 3 shows a normalized dust surface-density distribu-
tion for a set of sample simulations that are used to train the
DPNNet-2.0. The most distinct and visible features are the
presence of dust gaps and rings. These annular structure can be
broadly categorized as (a) a single deep gap of increasing width
(left to right) as seen in the top row, (b) two gaps adjacent to a
planet (first two panels from the left in the bottom row), and (c)
a deep cavity as evident in the rightmost plot in the bottom row
in Figure 3. For details about the characteristics of the gaps
refer to Section 3.2 in Paper I.

The images are initially filtered to eliminate runs that have
undetectable gaps or more than two gaps. After the initial
screening we are left with 2945 images combined from all the
four different time instances. We crop the images to remove the
axis and the color bars. Then they are resized to exactly match
the required resolution, which is this case was 512× 512. The
cropped images are further preprocessed before feeding them as
inputs to the network. The pixel values of the images ranges
between 0 and 255. We normalize each pixel value within the
range 0–1, as inputs with larger values can slow down/disrupt
the training process. Furthermore, we implement a standardiza-
tion technique where the pixel values are distributed normally
with a mean of 0 and standard deviation of 1.
Each image is associated with a set of input parameters MP,

α, h0, σ, St, ò. We assign each image a target variable planet
mass MP. For the single-input DPNNet-2.0 the images serve as
the sole input and the planet mass is the targeted output.
However, for the multi-input DPNNet-2.0, we assign each
simulation a set of feature variables (α, h0, σ, St, ò) and the
corresponding image as the input. The target variable is the
planet mass MP. The data for each feature variable is
normalized using standard (z-score) scaling by subtracting the
mean and scaling it by the standard deviation.

3.5. DPNNet-2.0 Training

The CNN and the MLP architectures are implemented using
the deep-learning API, Keras, which acts as an interface for
TensorFlow (Abadi et al. 2015). For the purpose of training and
testing the model we split the data set into two blocks, a
training set consisting of 85% and a testing set consisting of
15% of the simulation data. The training set is further split to
keep 15% of the data aside for model validation. There are two
separate training processes for the two modules of the DPNNet-
2.0. For the single-input CNN-based module only the
preprocessed simulated images from the training set are fed
into the network as the input. The multi-input module accepts

Figure 2. A schematic representation of the multi-input DPNNet-2.0 that can accept both the image and the disk characteristics as inputs. The image is fed to the CNN
and the disk parameters propagate through the MLP model. The output from the CNN and the MLP is concatenated and passed through a fully connected (FC) layer
and a linear activation layer. The final output is the planet mass. For more details refer to Section 3.3.
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both the preprocessed simulated images and the corresponding
normalized feature variables (α, h0, σ, St, ò). In both the cases
the target variable, planet mass MP, is the same. The resolution
of the input images are fixed to 512× 512.

The training process works iteratively where the weights are
adjusted after each step until they are optimized. For each
iteration a subset of the training data set is fed into the network
(batch size= 20) to minimize the computational cost during the
optimization process. We use an adaptive learning rate 10−5

with a small decay of 1/2000. The single- and multi-input
modules are trained independently for several epochs while
monitoring the validation loss, mean square error (MSE), after
each iteration. We implement early stopping and use the
callback function to stop the training when the model is stable
and reaches optimal performance (minimum MSE). This is
done to avoid overfitting or underfitting of the model. A small
number of epochs would result in an underfitted model whereas
a large number of epochs might lead to overfitting. Figure 7
shows the behavior of the loss function (in terms of MSE) as a
function of epochs during the training process until it stabilizes
for both the modules. Note that the training process is almost
independent of the batch size due to the use of ResNet
architecture, which is shown to be insensitive to the specific
choice of batch size (Lathuilière et al. 2018). The training is
accomplished with GPU machines RTX 8000 and TESLA P100

available in the supercomputing clusters at ASIAA. For the
initial code development and testing we used the M1-ARM-
based chip from Apple and the nonpaid version of Google
Colab. However, both Google Colab and M1 had limited GPU
memory and could only be used for low-resolution images. The
performance benchmarking of the different hardware against
the use of various CNN architecture is shown in the Appendix.

4. Results

Once the training process is complete, we have two trained
modules of DPNNet-2.0 that can be deployed to predict planet
masses from disk images. The single-input module accepts
simulated images as input, while the multi-input one
additionally considers the feature variables. We deploy both
the modules on the test data set to quantify the network’s
performance when applied to unseen data. We compare the
network’s accuracy in terms of the r2 score as well as the rms
error (RMSE) for the single- and the multi-input modules.
The test data set consists of 429 randomly chosen sample

simulated images along with the corresponding feature
variables and the true values of the planet mass (as used in
the underlying hydrodynamic simulation). These images are
fed into the single-input DPNNet-2.0 to predict the planet mass.
Figure 4(A) illustrates the correlation between the predicted
planet mass (in Earth-mass units, M⊕) and the actual values of

Figure 3. The normalized dust surface-density distribution after 3 × 103 orbits for different planet masses and different disk initial conditions indicated on the top right
corner of each image. The top row shows systems with a single gap with increasing width from left to right. The first two panels on the bottom row have two gaps
adjacent to a planet, and the rightmost plot in the bottom row has a deep cavity. The mass of the embedded planet is indicated in each panel.
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the planet mass used in the simulations. The predicted planet
masses mostly lie along the black line indicating a strong
correlation with an r2 score of r2SI= 0.96. We further estimate
the RMSE and the mean absolute error (MAE) to quantify the
model’s performance. DPNNet-2.0 with a single input has an
RMSE of 6.2 M⊕ and an MAE of 4.3M⊕ when applied to the
test data set.

On implementing the multi-input module we have an
improved model performance. Figure 4(B) shows the correla-
tion between the predicted and the simulated planet mass. The
correlation is much tighter with r2MI= 0.98, which is an
improvement compared to the single-input module. The RMSE
and the MAE are 4.6M⊕ and 2.5M⊕, respectively, which are
comparatively lower.

To further reduce statistical fluctuations due to data
sampling, we apply k-fold cross validation, which is a
resampling process, using the Python SCIKIT-LEARN library.
The data is shuffled randomly and divided into k= 7 folds or
groups of equal size. A single fold is used for testing while the
remaining k− 1 folds are used to train the model. The process
is repeated k number of times, each time selecting a different
group to test and the remaining groups to train. The mean of the
RMSE values obtained from each iteration is used as a measure
of the model performance. Figure 8 shows the variation of the
mean RMSE (left panel) and the mean r2 score (right panel) as
function of image resolution for both the single- and multi-
input DPNNet-2.0. At the maximum image resolution of
512× 512 we measure a mean RMSE of (7.5M⊕, 4.9M⊕) and
mean r2 score of (0.94, 0.97) for the single- and multi-input
models, respectively. These values can be considered as the
prediction uncertainty of DPNNet-2.0. Thus the use of image-
based characterization enables DPNNet-2.0 to perform sig-
nificantly better compared to the MLP-based model (DPNNet)
in Paper I, which reported an RMSE of 12.5M⊕ and an MAE of
7.9M⊕ when applied to the test data set.

This is further illustrated in Figure 5, where we plot the
prediction error MP,simulated−MP,predicted for each of the
models. The error follows a normal distribution. The mean

for DPNNet-2.0 (|μ|SI= 0.8, |μ|MI= 0.3) is more centered
toward zero and the standard deviation (σSI= 6.2, σMI= 4.6) is
also lower compared to DPNNet (|μ|= 1.2, σ= 13.3),
indicating a tighter constraint for the predicted planet mass.
Thus image-based characterization of disk images using CNN
significantly brings down the prediction uncertainly/error.
DPNNet-2.0 outperforms its predecessor DPNNet in term of
both predictive capability as well as the flexibility to accept
images as a direct input.

5. Discussion and Conclusion

In this paper we introduce part I of the CNN-based DPNNet-
2.0 architecture to predict the mass of unseen exoplanets from
disk images. Currently this model is trained and tested on
images generated from hydrodynamic simulations of disk–
planet interaction. We demonstrate the high accuracy and the
efficiency of the network to predict the planet mass from the
simulated images. This provides the required framework for
extracting the mass of exoplanets from observed images, which
is a work in progress, where we need to train the model with
synthetic images (DPNNet-2.0 part II; S. Auddy et al. 2021, in
preparation). In part I we primarily focus on building the CNN-
based architecture and demonstrate its functionality based on
simulated images.
In Auddy & Lin (2020) we developed DPNNet, an MLP-

based model that accepts a set of disk parameters and predicts
the planet mass. This required measuring the gap width
explicitly from each of the observed images, which is often
prone to additional uncertainties (see Section 1.1). In this work
we exploit the power of computer vision, implementing a CNN
architecture, to learn in a more direct way the underlying
relationship between the features observed in the simulated
images of PPDs hosting an embedded planet. A CNN
architecture can extract features from a given image using the
various convolutional filters present within the network. This
makes it possible to map the connection between the various
disk structures, most prominent being the dust gap, and the
complex disk–planet interaction.

Figure 4. Correlation between the simulated planet mass and the predicted planet mass (in units of M⊕) obtained from the single-input (only images) and multi-input
(images and disk parameters) DPNNet-2.0 model. The r2 scores indicate the goodness of fit.
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Equipped with a CNN at its core, DPNNet-2.0 predicts the
mass of the unseen planet from the disk morphology. It extracts
the features directly from images, thereby minimizing the errors
associated with different user-defined measurement probes.
Compared to the results of Paper I having a mean RMSE
of± 12.5M⊕, the single-input DPNNet-2.0 yields a much
tighter constraint to the predicted planet mass with a reduced
mean RMSE of± 7.4M⊕. This can also be attributed to the fact
that in addition to considering the visible gap width, DPNNet-
2.0 takes in account other morphological characteristics (like
gap depth and asymmetries such as vortices and spirals) which
are the imprint of disk–planet interaction as observed in

simulated disk images. This makes DPNNet-2.0 much more
effective in constraining the properties of unseen planets, like
planet mass.
The multi-input module in DPNNet-2.0 is designed to accept

disk features in addition to dust surface-density-simulated
images. It inherits the MLP module from DPNNet (Paper I),
which gives it the flexibility to accept disk features, like α, h0,
σ, St, and ò along with images. This allows the network to
further reduce the uncertainty in the predicted planet mass. It
yields a mean RMSE of± 4.9M⊕, which is an improvement
over the single-input model. Thereby, multi-input DPNNet-2.0
retains the beneficial part of DPNNet while improving its
capacity to better extract features from the simulated images.
However, many of the disk parameters that are required for

the multi-input DPNNet-2.0 are often not well constrained from
observation. One usually considers canonical values when
precise measurement is not possible. For example, it is
common to consider a disk to be weakly turbulent, α≈ 10−3,
with a particle abundance (dust-to-gas ratio) of ∼1%,
comprised of millimeter-sized dust grains. On the other hand,
disk temperatures can be constrained with more confidence (Y.-
W. Tang 2021, private communication), which is used to
estimate the disk aspect ratio h0. Thus, as a test we train an
additional multi-input model where we drop all the feature
variables except the disk aspect ratio h0. Once trained we test
the network on the same test data, but this time the network
only accepts the simulated disk image and the corresponding
h0. Figure 6 gives the correlation between the predicted planet
mass and the simulated values. The r2 score is
r2SI< r2AR< r2MI implying an increase in accuracy compared
to single-input models but a decrease compared to multi-input
models. This is indicative of the fact that with the addition of
more disk parameters as inputs, along with a simulated image,
the prediction uncertainty gets reduced.
In the next section we will highlight the limitations

associated with limited training data and CNN architecture,
and discuss the scope for improvement in the future.

6. Network Limitations and Future Scope

The key to an effective well-trained model is a generous data
set that includes a broad parameter space and captures a wide
diversity of disk morphology induced by disk–planet interac-
tion. A trained network is only as good as its training data set,
which ideally must encompass all possible scenarios. However,
it is not only challenging to design simulations which do that,
but it is equally expensive to generate the data. In this paper we
only use simulated images and explore a narrow parameter
space due to finite computational resources.
The ultimate objective of DPNNet-2.0 is to predict planet

mass from observed images. However, due to the limited
availability of observed PPD images the model cannot be
solely trained with observed data. Thus, DPNNet-2.0 is trained
and tested on simulated images to verify the capability of the
framework. Part I of the DPNNet-2.0 model, this paper, mainly
focuses on the model build and the network architecture.
Though in its current state this model has its limitations, this
novel approach opens a unique direction of using computer
vision for parameter estimation (for, e.g., planet mass) from
observed disk images. Part II of this work will focus on
developing more realistic training data sets (e.g., synthetic
images, wider parameter space) to improve the robustness and
applicability of the model on observed images.

Figure 5. Distribution of the prediction error MP,simulated − MP,predicted for
DPNNet, single-input, and multi-input DPNNet-2.0.

Figure 6. Correlation between the actual and the predicted mass when using a
simulated image as well as the disk aspect ratio h0 as inputs.
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Figure 7. The training and validation loss is shown as a function of training epoch for the single- as well as the multi-input DPNNet-2.0 model.

Figure 8. Left: the variation of the mean value of RMSE with the increasing resolution of images obtained from k-fold cross validation. Right: The corresponding
mean value of the r2 score indicating the goodness of fit between the predicted and the simulated planet mass. The error bar indicates the standard deviation incurred
due to sampling.

Figure 9. Comparison of various GPU hardware in terms of training time for the ResNet50/Vgg-16 architecture used in the DPNNet-2.0 model.
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In DPNNet-2.0 part II (S. Auddy et al. 2021, in preparation)
we use synthetic observations as the training data set. This
requires 3D disk models obtained by running 3D hydrody-
namic simulations or by “puffing up” 2D disk models. In either
case, we follow up with radiative transfer calculations using a
variety of dust opacities and protostellar properties, and put
them through a synthetic image generator to mimic interfero-
metric observations (Dong et al. 2015). Once the data set is
generated we will simply retrain the DPNNet-2.0 model with

these synthetic observations without changing the overall
architecture of the network.
For deploying DPNNet-2.0 to observations, one should also

account for additional factors such as the viewing angle, dust
opacity, observing wavelength, multiple gaps, and stellar
properties, to name a few. These dependencies will generally
increase the training data set. However, some of these issues
can be addressed without any change to the DPNNet-2.0
architecture. For example, although DPNNet-2.0 is trained on
face-on images, in principle it can be applied to observations at

Figure 10. Pair plot representing the distribution of the input parameters (initial condition) sampled using LHS. The correlation between each quantity is demonstrated
in each panel. The histograms of the different quantities are also represented in the diagonal. The LHS was implemented using the pyDOE package to generate a
uniform random distribution of the parameters. Each parameter value was centered within the sampling intervals.
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other viewing angles by deprojecting it. It is, in fact, a standard
procedure to deproject observed ALMA disk images (for
example, see Huang et al. 2018a, 2018c; Pinte et al. 2020) with
varying viewing angles (i.e., inclined and/or rotated with
respect to the observer) to obtain face-on images. One can
directly feed these deprojected images to DPNNet-2.0 as an
input without altering the training process. In DPNNet-2.0 part
II and future follow-ups we will address these issues in more
detail, overcoming the limitations of computational resources,
and work toward improving the efficiency of the model.
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Code Availability

The codes used for developing DPNNet-2.0 are available on
the GitHub software repository at https://github.com/sauddy/
DPNNet-2.0. The codes for the DPNNet in Auddy & Lin
(2020) are also available at https://github.com/sauddy/
DPNNet.

Appendix

Figure 7 shows the training and the validation loss (MSE) as
a function of training epoch for the single- and multi-input
models, respectively. In Figure 8 we show the variation of the
mean RMSE and the r2 score for different image resolutions.
Figure 9 gives the relative computation cost for both ResNet50
and Vgg-16 using different GPU hardware. Figure 10 is a pair
plot representing the distribution of the input parameters
sampled using LHS.
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