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Abstract

Planet-induced substructures, like annular gaps, observed in dust emission from protoplanetary disks, provide a
unique probe for characterizing unseen young planets. While deep-learning-based models have an edge in
characterizing a planet’s properties over traditional methods, such as customized simulations and empirical
relations, they lacks the ability to quantify the uncertainties associated with their predictions. In this paper, we
introduce a Bayesian deep-learning network, “DPNNet-Bayesian,” which can predict planet mass from disk gaps
and also provides the uncertainties associated with the prediction. A unique feature of our approach is that it is able
to distinguish between the uncertainty associated with the deep-learning architecture and the uncertainty inherent in
the input data due to measurement noise. The model is trained on a data set generated from disk–planet simulations
using the FARGO3D hydrodynamics code, with a newly implemented fixed grain size module and improved initial
conditions. The Bayesian framework enables the estimation of a gauge/confidence interval over the validity of the
prediction, when applied to unknown observations. As a proof of concept, we apply DPNNet-Bayesian to the dust
gaps observed in HL Tau. The network predicts masses of 86.0± 5.5M⊕, 43.8± 3.3M⊕, and 92.2± 5.1M⊕,
respectively, which are comparable to those from other studies based on specialized simulations.

Unified Astronomy Thesaurus concepts: Neural networks (1933); Exoplanet detection methods (489);
Protoplanetary disks (1300); Bayesian statistics (1900)

1. Introduction

Observed substructures, like concentric rings and gaps, from
near-infrared images of protoplanetary disks (PPDs) in dust
emission (ALMA Partnership et al. 2015; Andrews et al. 2016;
Huang et al. 2018a) are often interpreted as the signatures of an
embedded planet. However, owing to limitations in the current
planet search techniques (Fischer et al. 2014; Lee 2018), the
direct detection of planets in disks is still a challenge.

Only recently have there been measurements using gas
kinematics (Pinte et al. 2018; Teague et al. 2018; Pinte et al.
2019, 2020) that have found planetary signatures, such as
“kinks” due to velocity perturbations, inside the observed dust
gaps. Additionally, the direct detection using H α emission of
an accreting planet (Keppler et al. 2018; Wagner et al. 2018;
Haffert et al. 2019) inside the cavity of the transition disk PDS-
70 has provided compelling evidence in favor of plane-
tary gaps.

Thus, characterizing the large-scale planet-induced distor-
tions observed in PPDs offers a unique opportunity to probe
unseen young planets during the epoch of their formation. This
is achieved by identifying and comparing the features with
theoretical models of planetary gaps generated using custo-
mized simulations (Crida et al. 2006; Paardekooper &
Papaloizou 2009; Duffell & Macfadyen 2013; Fung et al.
2014; Duffell 2015; Kanagawa et al. 2015a; Zhang et al. 2018;
Ilee et al. 2020) or empirical relations (Kanagawa et al. 2016;
Lodato et al. 2019). However, owing to the increasing sample

size of the observed disks and the complexity of disk–planet
simulations, one needs to run hundreds of customized
simulations to analyze each observed system. This is too
expensive and inefficient to be of practical use as a detection
tool. The alternative is to use deep-learning models, trained
with simulation data (generated only once), to detect/
characterize exoplanets from the observed data in a more
efficient and accurate way.
In Auddy & Lin (2020) and Auddy et al. (2021), hereafter

Papers I and II, respectively, we successfully designed deep-
learning models using a multilayer perceptron (MLP) and/or a
Convolutional Neural Network (CNN) to predict planet mass
from the planetary gaps in PPDs. Both models (DPNNet-1.0
and DPNNet-2.0) are end-to-end pipelines that are capable of
predicting the mass of an exoplanet from an observed PPD
harboring a gap-inducing planet. Recently, Zhang et al. (2022)
have also developed a CNN-based model to directly infer the
planet mass from radio dust continuum images. However, one
of the main challenges with traditional deep-learning models is
quantifying the uncertainties associated with their predictions.
This has direct implications for how a deep-learning model
performs when trained on limited and/or noisy data.
Furthermore, the inability of the traditional deep-learning
model to answer “I do not know” or “I am not confident” is
concerning, particularly when treating out-of-training distribu-
tion points (i.e., input data points that are outside the parameter
space explored in the training data set). Thus, it is crucial to
understand the limitations of a deep-learning model by
quantifying the errors associated with its predictions and
identifying the source of the uncertainty.
Recently, some of these shortcomings have been addressed

by introducing probabilistic methods, such as Bayesian
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techniques, to deep-learning architectures (Kendall &
Gal 2017; Jospin et al. 2020; Wilson & Izmailov 2020). A
Bayesian Neural Network (BNN) improves on traditional deep-
learning models by providing uncertainty estimates associated
with the predictions of these models. BNNs are truly unique in
their ability to distinguish between the uncertainty that is
caused by the limitations of the model and the uncertainty that
is inherent to the input data. More so, these architectures can
even respond to pathological out-of-training cases with a large
error bar.

For a classical neural network, one would have deterministic
point estimates from a single optimized network as the output
of the network (e.g., see Paper I). A BNN considers an
aggregation of predictions (also known as marginalization)
from multiple independent predictor networks and performs a
model average to obtain the output as a distribution. A BNN is
a type of stochastic neural network, in which the weights are
given as a distribution. It enables us to understand the
uncertainty that is associated with the network architecture.
This is particularly powerful in constraining the error when
performing a regression task to estimate parameters (such as
planet mass, in our case) using deep-learning models. Thus,
any prediction comes with a confidence interval, meeting the
requirement of a scientific experiment, and one that can be
compared with other methods of parameter estimation.

In this paper, we develop and introduce “DPNNet-Baye-
sian,” a standard MLP-based model designed using Bayesian
formalism to predict planet mass from disk gaps as well as to
quantify the uncertainty associated with the prediction. Our
network is trained with synthetic data from explicit planet–disk
simulations using the FARGO3D hydrodynamics code, with a
newly implemented fixed grain size module and improved
initial conditions.

The paper is organized as follows. In Section 2, we give an
overview of Bayesian deep learning, its implementation, and its
advantages over traditional deep-learning approaches. In
Section 3, we describe the disk–planet hydrosimulations as
well as the parameter space considered for the current study.
We introduce the BBN architecture implemented in DPNNet-
Bayesian in Section 4, and discuss in detail the steps used to
preprocess the data. In Section 5, we give the predictions of,
along with the error estimates from, our trained DPNNet-
Bayesian, based on simulated data. In Section 6, as a proof of
concept, we deploy DPNNet-Bayesian to observed PPDs
around HL Tau and AS 209 to infer the planet masses and
the associated errors. Finally, in Section 7, we discuss the
results and draw conclusions.

2. Bayesian Deep Learning: A General Overview

A neural network architecture consists of a few thousands (or
even millions) of nodes/neurons that are densely intercon-
nected. For this architecture, let

1. θ represent all the internal model parameters, and
2. D represent the training data, which consists of a

specified set of observed features Dx (e.g., gap size)
and their corresponding output labels Dy (e.g., pla-
net mass).

Deep learning is a technique for optimizing the model
parameters θ based on a training data set D (Goodfellow et al.
2016; Shrestha & Mahmood 2019). This is done by computing
the minimum “cost” using some method of backpropagation.

Usually, the cost function is defined in terms of the log
likelihood of the training data set, and thus the training process
can be defined as a maximum-likelihood estimation. This
approach might suffer from overconfidence, as it is determi-
nistic in nature. An alternative to this is to implement the use of
stochastic components in the neural network. This can account
for the uncertainties in the determination of the network
parameters θ, which finally shows up as an estimated error in
the predictions made by a deep-learning architecture (Jospin
et al. 2020). For these types of neural nets, the stochastic
elements can be introduced in terms of stochastic model
weights or activation. Thus, instead of a single deterministic
output from the traditional deep-learning model, for the
stochastic networks a marginalization of the output is
considered, based on some statistical principle (Wilson &
Izmailov 2020).
In order to design a predictive model based on BNN, one

starts with a suitable choice of deep-learning architecture. The
next step is to choose a systematic prescription, in order to
introduce the stochastic elements into the network architecture.
This can be modeled in terms of some possible prior
distribution of the model parameters, p(θ).
From Bayes’ theorem, we get

( ∣ ) ( ∣ ) ( ) ( )q q qµp D p D D p, , 1y x

where Dy denotes the training labels and Dx are the training
features, as mentioned earlier. The Bayesian posterior distribu-
tion, p(θ|D), depicts the model parameters as a probabilistic
distribution, rather than some deterministic value.
The Bayesian approach allows us to compute the model

averages by essentially integrating over the models, parameter-
ized by the model parameters θ. The distribution of the possible
values of y (e.g., planet mass) given some input x (e.g., dust
gap width) is given by

( ∣ ) ( ∣ ) ( ∣ ) ( )ò q q q= ¢ ¢ ¢
q

p y x D p y x p D d, , . 2

In Equation (2), the variance of ( ∣ )q¢p y x, captures the
uncertainty due to the measurement noise of the input data,
while the variance of ( ∣ )q¢p D corresponds to the uncertainty
associated with the neural network architecture.
The classical training would correspond to p(θ|D) being

replaced by a constant value of θ, but in the Bayesian case this
would typically be a probability distribution with some finite
variance (Wilson & Izmailov 2020; Abdar et al. 2021). Also,
computing p(θ|D) from the training data is one of the most
challenging and difficult aspects of the BNN architectures, due
to the large size of the parameter space. This is further
discussed in the following sections.

2.1. The Variational Inference Approach to Bayesian Deep
Learning

Due to the large dimensionality of the sampling space, it can
be quite challenging to merge the concepts of a neural network
with the Bayesian approach. As the posterior distribution is
extremely complex, directly estimating p(θ|D) to perform the
integral in Equation (2) is not always possible. Different
methods, involving various approximations, have been imple-
mented to do this. One of the most popular and direct methods
for sampling the posterior distribution, p(θ|D), is using a
Markov Chain Monte Carlo (MCMC) method (Bardenet et al.
2017). However, MCMC often has issues with scalability,
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owing to the large model sizes, and it can be computationally
expensive as well.

Instead of sampling from the posterior directly, the method
of variational inference (Blei et al. 2017; Mohan et al. 2022)
can be used as an alternative. A distribution (referred to as the
variational distribution), parameterized by an arbitrary set of
parameters f, is used to approximate the posterior. The
parameter f is learned in a way that the distribution qf(θ)
becomes close to the exact posterior p(θ|D). The closeness
between the posterior and qf(θ) is quantified in terms of the
Kullback–Leibler (KL) divergence (Zhang et al. 2019; Jospin
et al. 2020). More precisely, the formalism of the evidence
lower bound (ELBO) is used for this purpose:

( ) ( )
( )

( )ò q
q
q

q= ¢
¢
¢

¢
q

f
f

q
p D

q
dELBO log

,
. 3⎛

⎝
⎜

⎞

⎠
⎟

Minimizing the ELBO is equivalent to minimizing the KL
divergence, as ( ( )) ( ∣∣ )= - fp D D q pELBO log KL , where log
(p(D)) depends on the prior and DKL is the KL divergence.
Such a variational approach has been used in a variety of other
astronomical applications, such as in Roberts et al. (2013),
Perreault Levasseur et al. (2017), Leung & Bovy (2019), and
Spindler et al. (2021).

2.2. Features and Advantages of BNN

Once the ELBO function is optimized, and the variational
distribution is thus learned/trained, we can use it to predict the
labels of new (unseen) observations. The predictive posterior
distribution p(y

*

|x
*

, D) is given by integrating out the model/
variational parameters (trained using the data set D):

( ∣ ) ( ∣ ) ( ∣ ) ( )ò q q q= ¢ ¢ ¢
q

* * * *p y x D p y x p D d, , , 4

where (x*, y*) represent the features and labels, respectively,
and the superscript “∗” denotes unseen data. In order to obtain
this predictive distribution, we use Monte Carlo sampling.
First, we sample from the distribution of model parameters

N times:

( ∣ ) { } ( )q q~ Îp D j N1, 2 ,..., . 5j

Then xi is sampled n times from the distribution of the input
features, whose width is determined by the errors associated
with the feature itself, to estimate the predictive distribution

( ∣ )q* *p y x ,i i
j . For N× n iterations, we get

( ∣ ) ( ∣ ) ( ∣ ) ( )åå q q»
= =

* * * *p y x D p y x p D, , . 6
i

n

j

N

i i
j j

1 1

The error/uncertainty in the predictions of the BNN can be
broadly classified into two categories: epistemic and aleatoric
uncertainty (Abdar et al. 2021; Hüllermeier & Waegeman
2021). “Aleatoric” uncertainty (AL) represents the uncertainty
inherent in the data that is given as the input for the model (e.g.,
the measurement noise). In contrast, “Epistemic” uncertainty
(EP) represents the limitations of the machine-learning (ML)–
based model that usually stem from a lack of information about
the system. Taking a larger data set for the training of the
model (spanning a larger parameter space) or improving the
ML architecture can typically reduce the EP. On the other hand,
as the AL is intrinsic to the measurement noise of the input
data, it cannot be reduced by solely improving the ML model.
Both these uncertainties propagate to the output to give the net
predictive uncertainty (Abdar et al. 2021), as shown in
Figure 1.
We can measure the EP, , from the variance of the posterior

distribution of the model parameters, p(θ j|D), given as:

( ∣ ) ( )s q~ ¢p DVariance of . 7EP
2

σEP quantifies the intrinsic uncertainty associated with the
model. It enables us to understand the correlation between the
model’s performance, the quantity/quality of the data, and the
parameters of the ML architecture. Thus, monitoring σEP can
give insights into improving the overall ML model.
The AL, is obtained from the variance of ( ∣ )q* *p y x ,i i

j , given
as:

( ∣ ) ( )s q~ p y xVariance of , . 8AL
2

Figure 1. This schematic diagram shows the workflow of a typical BNN, along with how the uncertainty/errors propagate.
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σAL quantifies the statistical uncertainty/error associated with
the various measurements that go as input features into the
neural net at the training stage, as well as when the model is
deployed for real-world application. Knowing σAL, one can
monitor the errors in the predictions of the model as the
measurement noise of the input features changes. The
advantage of knowing both σEP and σAL is that when testing
the model, one can trace the source of the uncertainty and
improve the model/data set accordingly.

3. Disk–Planet Simulations

We model the structural variations of a dusty PPD due to an
embedded gap-opening planet using the FARGO3D hydrody-
namic simulation code (Benítez-Llambay & Masset 2016). We
update the public version of the code by parameterizing the
dust–gas interaction with a constant particle size, instead of a
fixed Stokes number. This includes a generalization of the
steady-state profiles derived by Benítez-Llambay et al. (2019),
which are presented in Appendix. We generate the data set with
the updated simulations to train the BBN model. The
simulation setup and the parameter space are discussed in the
next section.

3.1. PPD Setup

We model a simple 2D razor-thin disk with an embedded
planet of mass MP located at R= R0. The planet is on a
Keplerian orbit around a central star of mass M* and it is not
migrating. The unit of time is the planet’s orbital period
P0= 2π/ΩK0, where ΩK0 is the Keplerian frequency. The
subscript “0” denotes evaluation at the planet’s location R0.

The disk’s initial gas surface density profile is given as

( ) ( )S = S
s-

R
R

R
, 9g g0

0

0

⎜ ⎟
⎛
⎝

⎞
⎠

where σ0 is the exponent of the surface density profile and
Σg0= 10−4 is a constant in the code unit, which is arbitrary for
non-self-gravitating simulations without orbital migration. For
reference, however, this surface density scale corresponds to
Toomre parameters  80 for all of our disk models, which
are sufficient for the disk to be gravitationally stable
(Toomre 1964). The disk is flared with a constant flaring
index F, such that the aspect ratio varies as

( )= =h
H

R
h

R

R
, 10

F

0
0

⎜ ⎟
⎛
⎝

⎞
⎠

where H is the disk scale height and h0 is the aspect ratio at
R= R0. The disk is locally isothermal, with a sound-speed
profile of cs(R)= h0 RΩ K. To mimic the disk’s turbulence, we
include viscous forces in the gas disk using the standard α-
prescription (Shakura & Sunyaev 1973), where the kinematic
viscosity ν= α cs

2/Ω K and α is set by Equation (A21).
We consider a single population of dust particles modeled as

a pressureless fluid (Jacquet et al. 2011). The dust particle size
is parameterized using the Stokes number S≡ tsΩ K, where ts is
the stopping time characterizing the strength of the dust–gas
coupling (Weidenschilling 1977). The initial dust surface
density is Σd= òΣg, where ò is the dust-to-gas ratio set by
Equation (A19). The dust’s backreaction onto the gas is
included in the simulations.

3.2. Simulation Setup and Parameter Space

We run FARGO3D planet–disk simulations on graphical
procession units. Our computational domains are Rä [0.4,
3.0]R0 and f ä [0, 2π], which are discretized with 512× 512
logarithmically spaced cells. The radial and azimuthal
boundaries are set to their initial equilibrium solutions, given in
Equations (A10)–(A13). The planet mass is allowed to grow
slowly over first 100P0. We implement the wave-killing (de
Val-Borro 2006) module to damp the planet-generated waves
to zero near the boundaries, to minimize the reflection and
interference with disk morphology.
We target planets from super-Earth to Saturn size with

masses MP ä [8,120] M⊕ around a 1 Me central star. We
model the disk for a range of values of the disk aspect ratio
h0ä [0.025, 0.1], viscosity parameters α0ä [10−4, 10−2],
flaring index F ä [0,0.25], and power-law slope of the surface
density profile σ0ä [0.05, 1.2]. In each disk, we consider a
single dust species of fixed size characterized by the Stokes
number St ä [10−3, 10−1] and abundance ò0 ä [0.01,0.1]. This
range of St corresponds to particle radii ranging from ∼1 mm to
∼10 cm, for a typical gas surface density of 100 g cm−2 and an
internal grain density of 1 g cm−3. More details of the sampling
of the parameter space in order to generate the data set are
given in Section 4.2.

4. DPNNet-Bayesian

In this section, we introduce the Bayesian implementation of
the DPNNet model.

4.1. Network Architecture

The DPNNet model, as presented in Paper I, was based on
artificial neural networks, with a linear layer at the end for
performing regression. In the Bayesian adaption of DPNNet,
the front end of the model includes an MLP layer with 256
units of neurons having a ReLu activation function (this part of
the network is the same as DPNNet-1.0). This is followed by a
fully connected variational dense layer having 128 neurons, in
which the BNN algorithms are implemented to probe the model
uncertainty. We use the method of variational inference, as
described in Section 2.1, to account for the stochasticity of the
model parameters. Each model parameter is treated as a
distribution having some variance. The stochastic sampling
from this variational distribution gives an estimate of the model
uncertainty. Furthermore, we use a trainable prior distribution
for the parameter space, p(θ), where θ is drawn from a normal
distribution. This is used to determine the approximate
posterior distribution of the model weights using variational
inference.

4.2. Data Acquisition and Preprocessing

For the training and testing of the model, we produce the
new data set following the same procedure as used in Paper I.
We generate a uniform random distribution of the parameters,
each centered within the sampling interval, using the Latin
hypercube sampling method (McKay et al. 1979; Iman et al.
1981). We run a total of 1800 simulations with a range of input
parameters, as described in Section 3.2. From each simulation,
we obtain the dust and gas surface density maps of the PPD
with the embedded planet. Figure 2 shows sample images of
the dust surface density distributions and the corresponding
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radial profiles of the azimuthally averaged surface densities
from some of the simulations. These improved disk–planet
simulations (with fixed grain sizes and initial equilibrium disk
setups) result in a much more physical model for dust–gas
interaction compared to Paper I and Paper II.

Following Paper I and Kanagawa et al. (2016), we define the
dust gap width as

( )=
-

w
R R

R
, 11d,out d,in

0

where Rd,in and Rd,out are the inner and outer edge of the gap
where the dust surface density Σd equals a predefined threshold
fraction of Σd0. For consistency with Paper I, we adopt a
threshold fraction of half the initial surface. We acknowledge
that this definition of wd has its limitations, as it fails for
shallow gaps (for low-mass planets) when the gap depth is less
than the threshold function. However, this does not limit the

model’s application, as DPNNet-Bayesian can be retrained for
any threshold function or other definition of the gap width.
In the current paper, we only consider simulations with

either one dust gap or two dust gaps. We remove models with
>2 dust gaps, as the number of samples is not adequate to
effectively train the model. To build our feature space, we
simply define two dust gap widths for each simulation, wd1 and
wd2, but set wd2= 0 if only a single dust gap is formed.
The initial data set consists of 1800 simulations. We

preprocess the data by eliminating runs that do not open up
detectable axisymmetric gaps or that have more than two gaps.
After the initial filtering, we have data from 1098 simulations.
Each simulation is characterized by its input parameters (MP,
α0, h0, σ0, F, St, and ò0) and the associated gap width(s) in dust
(wd1, wd2) and gas (wg). In this paper, we will not use the gas
gap width as an input parameter for training the model, since
this is not directly measured from the observations.

Figure 2. The upper panel shows the normalized dust surface density distributions of disks with different initial conditions and for different planet masses at 3000P0.
The disk parameters are indicated at the top right of each plot, together with the planet mass at the bottom right. The lower panel shows the radial profiles of the
azimuthally averaged surface densities at the beginning of the simulation (Σd0; the dashed black lines) and at the end of the simulation after the gap is formed (Σd; the
solid red lines). The horizontal arrow marks the dust gap width. The gap width is the distance between the inner and outer edge of the gap (the vertical dotted lines)
where Σd(R) reaches 50% of the initial surface density Σd0. The crosses indicate the minimum surface density Σdmin.
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Once the gap widths have been measured, we assign each
simulation a set of feature variables (wd1, wd2, ò0, α0, St, h0, σ0,
and F) that will go as the inputs for our model, and we label the
planet mass, MP, as the target variable. The data for each
feature variable are then normalized using the standard (Z-
score) scaling, by subtracting the mean and scaling it by the
standard deviation.

4.3. Training DPNNet-Bayesian

DPNNet-Bayesian is implemented using Google Tensor-
Flow Probability (Dillon et al. 2017), which is an open source
platform that integrates probabilistic methods with deep neural
networks. We randomly split the data into two blocks, for a
training set consisting of 80% of the simulation data and a
testing set consisting of 20% of the simulation data.
Furthermore, for model validation, we use 20% of the training
data set. We use the Adam optimizer with a learning rate of
0.001. The model is trained for ∼2200 epochs, and the early-
stopping callback algorithm is used to prevent the model from
overfitting.

5. Results

Once the model has been trained, it is ready to be deployed
to predict the planet mass from observed disk features. We test
the network’s performance on the test data set that the model
has not been exposed to. This enables us to quantify the
network’s accuracy in predicting the planet mass from unseen
data. The test data set comprises all the feature variables along
with the target variable (the true value of the planet mass). The
feature variables (wd1, wd2, ò0, α0, St, h0, s0, and F) are
normalized with the same scaling that the network was trained
on. The trained DPNNet-Bayesian network takes the feature
variables as inputs and predicts the corresponding planet mass.
Unlike the standard MLP model, for the same set of input
feature variables, DPNNet-Bayesian gives the predicted output
as a distribution.

Figure 3 shows the correlation between the simulated and
predicted planet mass in Earth-mass (M⊕) units for all the test
samples. For each set of input variables, we conduct the
experiment (i.e., deploy the trained network) 200 times, to
obtain the marginalization of the predicted output. Thus, we
obtain a distribution for the predicted planet mass (as
demonstrated in Figure 4) capturing the uncertainties associated
with the parameters of the trained model. The error bars give
the standard deviation associated with each predicted value.
The predicted values lie along the black line, indicating a
strong correlation with the true planet mass. This is reflected by
the r2 score of 0.82 computed over the average prediction.

5.1. Error Analysis Using BNN

As mentioned before, the Bayesian approach offers a way of
quantifying and understanding the uncertainties associated with
the predictions from deep neural networks. As an example, in
Figure 4, we demonstrate the different uncertainty estimates
associated with predictions from DPNNet-Bayesian for sample
disk features selected randomly from the test data set. We pick
a disk–planet simulation with parameters/features ò0= 0.04,
α0= 0.008, St= 0.08, h0= 0.03, σ0= 1.11, and F= 0.21 and
measured dust gap widths wd1= 0.74, wd2= 0. Since these are
simulated data, the true value of the planet mass, MP= 46M⊕,
is known. To capture the EP, we deploy the trained model N

times for this fixed set of disk features. We set N= 200, with
the i index fixed, in Equation (6), and for each iteration the
model predicts a unique and independent value. This results in
the distribution of the predicted planet mass displayed in the
left panel of Figure 4. The mean (μEP= 47.6M⊕), shown with
the red dotted line, is taken as the final predicted value, while
the standard deviation (σEP= 5.8M⊕ ) represents the uncer-
tainty associated with the trained model.
The measured disk features are also prone to statistical

errors, due to the measurement techniques and the limitations
in the observed data. While the parameters in simulated models
are well constrained, that is not the case for observed disk data.
In order to simulate the uncertainties associated with the
measured disk parameters, we use a Monte Carlo analysis.
Instead of using fixed true values for the disk parameters, we
randomly sample them n times from their respective standard
normal distributions, with the mean set to the true value and the
standard deviation equal to a 1% spread for each of the
parameters. We set n= 1000, with j fixed, in Equation (6), such
that for each set of sampled input parameters the model predicts
a planet mass. The center panel of Figure 4 demonstrates
σAL= 8.3M⊕ corresponding to the predicted planet mass due
to the measurement noise of the input disk parameters.
The rightmost panel in Figure 4 captures the total uncertainty

in the predicted planet mass due to both EP and AL. We
randomly sample the disk parameters, n= 1000 times, from
their standard normal distribution, and for each draw we deploy
the model N= 200 times. This results in a distribution of the
predicted planet mass with mean μ= 49.8M⊕ and standard
deviation σ= 8.1M⊕.

6. Application to Observations

As a first test of our newly improved DPNNet-Bayesian
model, we deploy it to estimate the planet masses from the
observed dust gaps in the PPDs around HL Tau and AS 209.
The results are summarized in Table 1 and discussed below.

Figure 3. Correlation between the simulated and predicted mass in units ofM⊕.
The vertical error bars give the standard deviation associated with each
predicted value, obtained using the BNN. The r2 score indicates the goodness
of the fit.
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6.1. HL Tau

HL Tau is a well-studied system, which shows distinct
axisymmetric—possibly planet-induced—gaps in the dust
emission (ALMA Partnership et al. 2015). Several studies
involving hydrodynamic simulations (Dipierro et al. 2015;
Dong et al. 2015; Jin et al. 2016) have suggested that each of
the gaps are induced by a single planet. With the assumption
that the observed gaps are all planet-induced, we use the
properties of the observed gaps as input features for our BNN
model to predict the planet mass. DPNNet-Bayesian predicts a
distribution for the planet masses for each of the gaps. For the
three identified gaps at R= 10 au, 30 au, and 80 au, we obtain
the gap widths (wd1= 0.81, 0.23, and 0.29) and adopt the
disk aspect ratios of h0= 0.05, 0.07, and 0.10, respectively,
from Kanagawa et al. (2015b, 2016). HL Tau is mostly
laminar, with viscosity α0= 10−3 (Dipierro et al. 2015) and a
central star mass of M* = 1Me. We set a canonical value of
the dust-to-gas ratio ò0= 10−2 (ALMA Partnership et al.
2015; Dong et al. 2015) and adopt a mean Stokes number
St= 0.005 (Dipierro et al. 2015) for all three gaps. Since the
uncertainty associated with the input parameters is not well
constrained across the literature, we take a conservative
approximation and consider a 1%–5% variation in the gap

widths only. The top panel of Figure 5 shows the distribution
of the predicted masses in the three identified gaps for the
given disk parameters and gap widths. The mean values along
with the standard deviations of the predicted planet masses at
10 au, 30 au, and 80 au are 86.0± 5.5M⊕, 43.8± 3.3M⊕, and
92.2± 5.1M⊕, respectively. The standard deviation captures
the total uncertainty, which includes the uncertainty associated
with the BNN architecture (σEP is estimated as 4.0M⊕,
3.3M⊕, and 5.0M⊕, respectively, for the three gaps) along
with the AL. For the assumed variation of 1%–5% in the gap
widths, σAL is comparable to σEP. However, σAL can vary,
depending on the noise in the input data. These estimates are
mostly consistent with the inferred planet masses from direct
numerical simulations like those of Dong et al. (2015), Jin
et al. (2016), Dipierro et al. (2015), and DPNNet-1.0 in
Paper I.

6.2. AS 209

AS 209 is another well-studied system, hosting multiple gaps
at 9, 24, 35, 61, 90, 105, and 137 au (Huang et al. 2018b).
However, for simplicity, we only consider the two most
prominent gaps, at R= 9 and 99 au. We adopt the disk
parameters and dust gap widths from Zhang et al. (2018) and

Table 1
Inferred Planet Masses from the Gaps in HL Tau and AS 209

Observed Features DPNNet- Other Models
Bayesian

Name M* Rgap wd1 h0 a0 St 0 σ0 Mp0 Mp1 Mp2 Mp3 Mp4 Mp5 Mp6

(Me) (au) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ) (MJ)

1.00 10 0.81 0.05 10−3 0.005 0.01 1.0 0.27 ± 0.02 1.40 0.20 0.35 0.20 L L
HL Tau 1.00 30 0.23 0.07 10−3 0.005 0.01 1.0 0.14 ± 0.01 0.20 0.20 0.17 0.27 L L

1.00 80 0.29 0.10 10−3 0.005 0.01 1.0 0.30±0.02 0.50 0.20 0.26 0.55 L L

AS 209 0.83 9 0.42 0.04 10−4 0.016 0.01 1.0 0.06 ± 0.01 L L L L 0.37 L
0.83 99 0.31 0.08 10−4 0.016 0.02 1.0 0.12 ± 0.01 L L L L 0.18 0.21

Note. MP0 is the mass (in the Jupiter-mass unit MJ) predicted by the DPNNet-Bayesian model using the input features wd1, h0,α0 , St,ε0 , and σ0, as given in columns
4–9, and setting wd2 = 0. MP1 is the mass predicted by Kanagawa et al. (2016), implementing the empirical relation. MP2, MP3, and MP4 are the masses inferred using
customized simulations of HL Tau by Dong et al. (2015), Jin et al. (2016), and Dipierro et al. (2015), respectively. MP5 is the predicted planet mass of AS 209 by
Zhang et al. (2018). MP6 is the predicted planet mass of AS 209 by Fedele et al. (2018), using specialized simulations.

Figure 4. The distributions of the predicted planet masses for sample disk features selected randomly from the test data set. Left panel: the distribution captures the EP
associated with DPNNet due to lack of data and/or variations of the model parameters. Middle panel: the distribution represents the AL that arises due to errors/
variations inherent in the data. Right panel: the distribution captures the combined uncertainty in the predicted planet mass due to both EP and AL. The red dashed line
represents the mean planet mass in each of the plots.

7

The Astrophysical Journal, 936:93 (11pp), 2022 September 1 Auddy et al.



use a range of values for dust abundance, particle size, and disk
viscosity that are within our training parameter space. For
example, we set α0= 10 −4, St= 156.9× 10−4, and the surface
density profile σ0= 1 (Fedele et al. 2018) for both the gaps.
Next, for the innermost gap at R= 9 au, we assign values to the
other parameters: wd1= 0.42, h0= 0.04, and ò0= 0.012. For
the outer gaps at R= 99 au, we similarly select wd1= 0.31,
h0= 0.08, and ò0= 0.017. Once again, we consider a 1%−5%
variation in the gap widths as a conservative approximation for
capturing the uncertainty associated with their measurement.
The bottom panel of Figure 5 shows the distributions of the
predicted masses for the two identified gaps in AS 209, for the
given disk parameters and gap widths. The mean predicted
planet masses along with the standard deviations are
20.6± 2.2M⊕ and 36.3± 2.5M⊕ at 9 au and 99 au, respec-
tively. The standard deviation captures the total uncertainty,
which includes the EP (σEP is 2.0M⊕ and 2.1. M⊕ for the two
gaps, respectively) along with the AL. σAL is comparable to
σEP for the assumed variation of 1%–5% in gap widths.
However, σAL can vary, depending on the noise in the input
data. These estimates, particularly at R= 9 au, are lower
compared to Zhang et al. (2018). The discrepancy is partially
due to differences in the ways that the gap widths are measured,

the uncertainty in the adopted disk parameters, and the
simulation setups.

7. Discussion and Conclusion

In this paper, we have introduced DPNNet-Bayesian, a
BNN-based model that characterizes the masses of unseen
exoplanets from observed PPDs. Compared to its predecessor,
DPNNet-1.0, the Bayesian approach has the following
advantages. First, it quantifies the errors associated with the
predictions of the network and traces the source of the
uncertainty. Second, it gives a framework to understand various
regularization techniques that are used in traditional deep-
learning approaches (Jospin et al. 2020). Finally, compared to
traditional deep-learning models, where the weights are
initialized by some implicit prior, the Bayesian framework
accounts for this prior distribution explicitly.
For a BNN, one trains a distribution/ensemble of deep-

learning models and then, based on the Bayesian formalism,
performs model averaging/marginalization of the output. It is
to be noted that the BNN approach is fundamentally different
from “deep ensembles,” where different initializations are used
to train a set of networks, with the outputs being combined/
optimized. More so for the BNN approach, a weighted

Figure 5. Top panels: the distributions of the predicted planet masses at the three identified gaps in HL Tau, obtained using DPNNet-Bayesian. The mean values along
with the standard deviations of the predicted planet masses at 10 au, 30 au, and 80 au are 86.0 ± 5.5 M⊕, 43.8 ± 3.3 M⊕, and 92.2 ± 5.1M⊕, respectively. Bottom
panel: the distributions of the predicted masses for the two identified gaps in AS 209 for the given disk parameters and gap widths. The mean predicted planet masses
along with the standard deviations are 20.6 ± 2.2M⊕ and 36.3 ± 2.5 M⊕ at 9 au and 99 au, respectively.
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averaging is achieved by taking into account the posteriors of
the network parameters as weights. This is different from deep
ensembles, where the averaging is directly performed with the
output of the network.

Furthermore, the error/uncertainty associated with the
output of a BNN model is different from the standard metrics,
like the rms error (RMSE) and/or the mean absolute error
(MAE) that are used in traditional deep-learning models. Both
the MAE and the RMSE are measures of the error
(|MP,simulation−MP,predicted|) when the model is deployed on a
validation/testing data set for which the “true” target values are
known. However, they do not necessarily quantify the errors
accurately (or provide a confidence interval) when applied to an
unknown data set for which the target values are not known.
This can be problematic, as there is no way of knowing how
accurate the prediction is, so one needs to trust the validation/
testing error as an indication of the accuracy of the prediction.
Since a BBN model works on the principle of marginalization,
rather than optimization, the output is obtained by sampling
from a posterior distribution, thus providing the necessary
confidence interval.

The performance of any ML-based model depends on the
quality and/or quantity of the training data set. The Bayesian
approach helps us to understand the correlation between the
quality/quantity of the data set and the model performance by
monitoring the change in model uncertainty. The knowledge of
the EP and the AL enables the model to learn from a smaller
data set, by regulating the overfitting or underfitting. Thus, the
use of BNN architecture plays a pivotal role in improving the
training process, as well as determining the optimal deep-
learning architecture.

We conclude by highlighting the key results:

1. DPNNet-Bayesian estimates the planet mass from the gap
width observed in the dust emission. It takes as its input
dust properties (abundance, Stokes numbers) and gas disk
properties (aspect ratio, surface density profile, viscosity),

along with dust gap widths from observations, and
predicts the embedded planet mass.

2. For the training of DPNNet-Bayesian, we generated a
data set from disk–planet simulations using the FARGO3D
hydrodynamics code, with a newly implemented fixed
grain size module and improved initial conditions. The
trained model was tested on the simulated data set in
order to illustrate its applicability. The predicted mass
closely correlated with the “true” value of the simulated
planet mass.

3. Compared to DPNNet-1.0 (Paper I), the DPNNet-
Bayesian architecture additionally estimates the error
associated with the prediction of the model. It further
distinguishes between the uncertainty pertaining to the
deep-learning architecture (EP) and the errors associated
with the input variables due to measurement noise (AL).

4. We deploy DPNNet-Bayesian to dust gaps observed in
the PPDs around HL Tau and AS 209. Our network
predicts masses of 86.0± 5.5M⊕, 43.8± 3.3M⊕, and
92.2± 5.1M⊕ for the gaps at 10 au, 30 au, and 80 au,
respectively, at HL Tau. Similarly, for the AS 209 disk,
we find planet masses of 20.6± 2.2M⊕ and
36.3± 2.5M⊕ at the 9 au and 99 au gaps, respectively.
These estimates are in close agreement with the results
from other studies based on specialized simulations
(Dong et al. 2015; Zhang et al. 2018).

We thank the anonymous referee for the constructive
comments. S.A. and J.B.S. acknowledge support from NASA
under Emerging Worlds through grant 80NSSC20K0702. D.C.
acknowledges support from NASA under Emerging Worlds
through grant 80NSSC21K0037. M.K.L. is supported by the
Ministry of Science and Technology of Taiwan (grants 107-
2112-M-001-043-MY3, 110-2112-M-001-034-, and 110-2124-
M-002-012-) and an Academia Sinica Career Development
Award (AS-CDA-110-M06). Numerical simulations were

Figure 6. The radial profiles of the azimuthally averaged gas and dust surface densities at the beginning of the simulation and after 1000P0. The steady-state profile is
maintained with little evolution, in the absence of an embedded planet.
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performed on the TIARA cluster at ASIAA, as well as the
TWCC cluster at the National Center for High-performance
Computing in Taiwan.

Appendix
Steady-state Drift Solution for Fixed Particle Size

The current public version of the FARGO3D code has a
multifluid setup, with pressureless dust species interacting with
the gas by means of a drag force parameterized by a constant
Stokes number. We update this version of the code to
incorporate a steady background solution for the radial drift
of dust of fixed particle sizes instead of a fixed Stokes number.
Following the generalized steady-state solutions from Benítez-
Llambay et al. (2019) for a vertically integrated disk with an
isothermal equation of state, with pressure P= cs

2Σ, we rewrite
the exact background solutions for the gas and dust (i.e., in the
limit of zero coupling) as

( ) ( )b=v vR , A1g K

( )=v v , A2d K

respectively, where ( )f= W ^v R rK K is the Keplerian velocity, f̂
is the unit vector in the azimuth, and

( ) ( )b h h= + =R
h d P

d R
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2

log
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2

When the dust and gas are coupled, we write their velocities as
vd,g→ vd,g+ δvd,g. Considering the steady-state axisymmetric
Navier–Stokes equations for perturbed velocities (see
Equations (63)–(66) in Benítez-Llambay et al. 2019), the gas
and dust velocity perturbations in the radial direction are given
as
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and the azimuthal counterpart is
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Expanding Equations (A4) to (A7) using Equations (A8) and
(A9), we get
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The above solutions, Equations (A10)–(A13), are solutions to
the steady-state drift solution only if they satisfy the following
continuity equations:

( ) ( ) ( )d d¶ S = ¶ S =R v R v 0. A14R g R d dgR

The particle size is parameterized by the Stokes number, St= ts
ΩK, where the stopping time characterizing the strength of the
dust–gas coupling is given as

( ) ( )r r
p r

= =
S

t s c
s

2
. A15s p g s

p

g

Here, ρp is the density of the dust particles, s is the radius of the
dust particles, and Σg is the gas surface density. For a fixed
particle size, s= constant while the Stokes number St∝Σg

−1 is
a function of disk radius, since Σg∝ s-R 0 , unlike the default
setup, where St is set to constant.
To maintain a constant mass flux, i.e., ( )d¶ S =R vR g gR

( )d¶ S =R v 0.R d d , we set

( )dS =R v constant. A16g gR

Here, we only consider the gas component, but same result can
be arrived at for dust as well. Furthermore, since
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such that the net mass flux is constant. Thus, from
Equations (A10) and (A17) we can establish
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where a=−2β (β− 1)vK Stò, b= β (2γ+ 1), c= 2β2

(γ+ 1)+ 2β2St2(γ+ 1), and d =
+ +


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0 0

0
2

0 0 0
, with the

subscript “0” referring to the values at =R R0. Rearranging
Equation (A18), we solve for the dust-to-gas ratio ò and arrive
at
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0
and the negative root gives a

physical solution. Thus, in order to satisfy the condition for
constant mass flux for a fixed particle size, we adjust the dust-
to-gas ratio ò accordingly.
Furthermore, the viscous velocity of the gas V2D

vis without
dust grains is given as (Lynden-Bell & Pringle 1974)

( )
( )n n

= -
S

V
R

d R

d R
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2D g
1 2
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where ν= αcsh is the kinematic viscosity. For the steady-state
background solution, i.e., V2D

vis = 0, we set ν Σg R
1/2= constant

in Equation (A20), which is equivalent to

( ) ( )a a= s - -R R , A21F
0 0

2 10

where the subscript “0” refers to the values at =R R0 .
We initialize the disk–planet FARGO3D simulation with the

updated dust-to-gas ratio in Equation (A19) and fix the particle
size to a constant value using the fixed particle module.
Figure 6 shows the azimuthally averaged initial dust and gas
radial surface densities and the final surface density profiles
after the system has evolved 1000P0. As demonstrated, the
steady-state profile is maintained with little evolution, in the
absence of an embedded planet.
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