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ABSTRACT
Large-scale, dust-trapping vortices may account for observations of asymmetric protoplan-
etary discs. Disc vortices are also potential sites for accelerated planetesimal formation by
concentrating dust grains. However, in 3D discs vortices are subject to destructive ‘elliptic in-
stabilities’, which reduces their viability as dust traps. The survival of vortices in 3D accretion
discs is thus an important issue to address. In this work, we perform shearing box simulations
to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is
weak in the classic sense (e.g. with a Toomre Q � 5). We find a 3D self-gravitating vortex
can grow on secular time-scales in spite of the elliptic instability. The vortex aspect ratio
decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with
a turbulent core that persists for ∼103 orbits. We find when gravitational and hydrodynamic
stresses become comparable, the vortex may undergo episodic bursts, which we interpret as
an interaction between elliptic and gravitational instabilities. We estimate the distribution of
dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in
protoplanetary discs are more easily observed at large radii.

Key words: accretion – hydrodynamics – instabilities – methods: numerical – protoplanetary
discs – accretion discs.

1 IN T RO D U C T I O N

Vortex dynamics is playing an increasingly important role in pro-
toplanetary discs from both observational and theoretical perspec-
tives. Several observations of transition discs reveal lopsided asym-
metries in dust (Casassus et al. 2013; Fukagawa et al. 2013; Isella
et al. 2013; van der Marel et al. 2013, 2016; Pérez et al. 2014;
Hashimoto et al. 2015; Marino et al. 2015; Ohta et al. 2016; Kraus
et al. 2017). Disc vortices provide a possible explanation because
they are associated with localized pressure bumps, which can act as
dust traps (Barge & Sommeria 1995; Lyra & Lin 2013; Zhu et al.
2014). This interpretation suggests that large-scale vortices may be
common in real protoplanetary discs.

The origin of protoplanetary disc vortices is usually attributed
to hydrodynamic instabilities. To date, these include: the Rossby
Wave Instability (RWI; Lovelace et al. 1999; Li et al. 2000; Meheut
et al. 2010; Lin 2012b; Yellin-Bergovoy, Heifetz & Umurhan 2016;
Ono et al. 2016); the Sub-critical Baroclinic Instability (SBI; Pe-
tersen, Julien & Stewart 2007; Lesur & Papaloizou 2010; Lyra &
Klahr 2011; Raettig, Lyra & Klahr 2013; Barge, Richard & Le
Dizès 2016); the Convective Overstability (ConO; Klahr & Hub-
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bard 2014; Lyra 2014; Latter 2016); the Vertical Shear Instabil-
ity (VSI; Nelson, Gressel & Umurhan 2013; Stoll & Kley 2014;
Barker & Latter 2015; Lin & Youdin 2015; Richard, Nelson &
Umurhan 2016); and the Zombie Vortex Instability (ZVI; Marcus
et al. 2015; Lesur & Latter 2016; Umurhan, Shariff & Cuzzi 2016b).
A common outcome of these instabilities is vortex formation and/or
amplification.

Which of these hydrodynamic instabilities operate depends on
the disc structure and thermal state, but taken together they per-
tain to a wide range of protoplanetary disc conditions (Umurhan,
Estrada & Cuzzi 2016a). Since these mechanisms form or amplify
vortices, we can expect vortices to be natural features of protoplan-
etary discs. These vortices may assist in planetesimal formation by
concentrating dust particles (Inaba & Barge 2006; Meheut et al.
2012).

Given the relevance of protoplanetary disc vortices to planet for-
mation, it is essential to understand how they evolve under real-
istic conditions. A well-known result is that in three-dimensional
(3D) discs vortices can develop secondary instabilities that weaken
or even destroy them (Lithwick 2009; Lesur & Papaloizou 2009;
Chang & Oishi 2010; Railton & Papaloizou 2014). This would
strongly threaten their survival in protoplanetary discs. It is there-
fore necessary to model disc vortices in 3D and account for such
‘elliptic instabilities’ to obtain realistic vortex lifetimes.
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Another effect that is often neglected in modelling protoplane-
tary disc vortices is their self-gravity. Disc self-gravity is usually
described by the Toomre parameter

Q = cs�

πG�
, (1)

where cs is the sound speed, � is the disc’s rotation frequency, �

is the surface density, and G is the gravitational constant. Tradi-
tionally, self-gravity is considered important when Q � 1, which
is the formal criterion for gravitational instability in laminar, ax-
isymmetric thin discs (Toomre 1964). This typically translates to
rather large disc-to-star mass ratios, Md/M∗ � 0.1. However, the
condition for gravitational instability, and hence the importance of
self-gravity, can be relaxed when additional physics are considered
(Lin & Kratter 2016).

The effect of self-gravity on the equilibrium structure of a disc
vortex was first investigated by Adams & Watkins (1995) assuming
circular vortices. However, the shear in protoplanetary discs likely
only permits elliptical vortices (Lesur & Papaloizou 2009). Self-
gravity has also been included in studies of vortex formation and
evolution via the RWI (Lyra et al. 2009b; Lin & Papaloizou 2011;
Yellin-Bergovoy et al. 2016; Regály & Vorobyov 2017) and in
gravito-turbulent discs (Mamatsashvili & Rice 2009).

In the case of the RWI, recent studies show that disc self-gravity
affects vortex evolution when Q � π /2h (Lovelace & Hohlfeld
2013; Zhu & Baruteau 2016), where h is the disc aspect ratio. For
typical protoplanetary discs with h ∼ 0.05, this means that self-
gravity should be accounted when Q � 20; significantly larger than
the classic condition. However, these calculations have been limited
to razor-thin, two-dimensional (2D) discs.

The above discussion motivates us to study the evolution of el-
liptic vortices in 3D self-gravitating protoplanetary discs. This was
first attempted by Lin (2012a) in global 3D numerical simulations
of vortex formation via the RWI at planet gaps in self-gravitating
discs. However, these simulations lacked the numerical resolution
needed to capture the elliptic instability (EI). Thus, the survival of
3D vortices in self-gravitating discs remains unclear.

In this work, we study the evolution of 3D vortices in a local
patch of a self-gravitating protoplanetary disc. We use the shearing
box framework and insert a vortex to evolve as an initial value
problem. While less realistic than Lin (2012a) in terms of vortex
formation, this approach permits clean numerical experiments and
higher resolution.

We find self-gravity enhances the survival of 3D vortices against
the EI. The EI develops regardless of the strength of self-gravity, but
with sufficient self-gravity the vortex subsequently undergoes a slow
growth, with increasing levels of internal hydrodynamic turbulence.
The vortex then undergoes bursts; alternating between coherent and
turbulent cores. We interpret this as ‘gravito-elliptic’ feedback: a
growing vortex spins up and develops hydrodynamic turbulence
because of the EI, which contributes to further collapse by removing
the large-scale internal rotation. The latter effect is similar to secular
gravitational instabilities in viscous or dusty accretion discs (e.g.
Youdin 2011; Takahashi & Inutsuka 2014; Lin & Kratter 2016).

This paper is organized as follows. We list the basic equations
in Section 2. In Section 3 we give a qualitative discussion on the
expected effect of self-gravity on disc vortices. We describe our
simulation set-up and diagnostic measures in Section 4. We present
simulation results in Section 5. We discuss implications of our
simulations in Section 6 before summarizing in Section 7.

2 LOCAL DI SC MODEL

We consider an inviscid, 3D self-gravitating accretion disc orbiting
a central star. Cylindrical coordinates (R, φ, z) are centred on the star.
The equilibrium rotation profile is described by �(R)∝ R−q. We are
interested in Keplerian discs with q = 3/2 and a vertical oscillation
frequency �z = �. We adopt the shearing box framework to study
a small patch of the disc (Goldreich & Lynden-Bell 1965). Local
Cartesian coordinates (x, y, z) are anchored on a fiducial point (R0,
φ0, 0) in the global disc corotating with the background flow, so
φ0 = �0t where �0 ≡ �(R0). For simplicity, we drop the subscript
zero hereafter.

The Cartesian shearing box fluid equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

∂v

∂t
+ v · ∇v = − 1

ρ
∇p − ∇� − 2� ẑ × v + �2(2qx, 0, −z),

(3)

∇2� = 4πGρ, (4)

where ρ is the mass density, v is the total fluid velocity in the box,
p is the pressure, and � is the gravitational potential of the gas. We
adopt an isothermal equation of state so that

p = c2
s ρ, (5)

where cs = H� is the constant isothermal sound speed, with H
being the disc scale height at the reference radius.

A simple, steady-state equilibrium solution to the above equations
describes a stratified, axisymmetric shear flow with v = −q�x ŷ
and ρ = ρ(z). In dimensionless variables ρ̂ ≡ ρ/ρ0, where ρ0 is the
mid-plane density, and Z ≡ z/H, the density field satisfies

d2 ln ρ̂

dZ2
+ ρ̂

Q3D
+ 1 = 0, (6)

where

Q3D ≡ �2

4πGρ0
(7)

is a self-gravity parameter for 3D discs (Mamatsashvili & Rice
2010). The boundary conditions are ρ̂(0) = 1 and dρ̂/dz = 0 at
z = 0. In the non-self-gravitating limit, Q3D → ∞, we obtain the
usual Gaussian solution, ρ̂ = exp

(−Z2/2
)
.

However, for non-self-gravitating discs there exists another class
of equilibrium flow solutions corresponding to a vortex, which we
discuss below.

3 VO RT E X S O L U T I O N S A N D TH E
QUALI TATI VE EFFECT OF SELF-GRAVITY

In this section we discuss the effect of disc self-gravity on equilib-
rium flows that correspond to a vortex. To do this, it is useful to
work in coordinates that reflect such a flow pattern. We thus adopt
the non-orthogonal ‘elliptico-polar’ coordinates (s, ϕ, z) defined by

x = s cos ϕ, (8)

y = χs sin ϕ, (9)

where χ is a constant, and z remains unchanged (see e.g. Kerswell
1994, for further discussion of this coordinate system). Here, we
take χ > 1 so that the coordinate s ∈ [0, ∞) corresponds to the
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semiminor axis of a series of similar ellipses, and ϕ ∈ [0, 2π ]
corresponds to the azimuthal position along a given ellipse. We also
define the fluid velocity components vs, vϕ such that

vx x̂ + vy ŷ ≡ vs s + vϕϕ, (10)

where

s ≡ cos ϕ x̂ + χ sin ϕ ŷ, (11)

ϕ ≡ − sin ϕ x̂ + χ cos ϕ ŷ. (12)

The shearing box equations in elliptico-polar coordinates are listed
in Appendix A.

3.1 The GNG vortex in the absence of self-gravity

Goodman, Narayan & Goldreich (1987) present exact vortex so-
lutions to equations (2) and (3) in the absence of self-gravity (by
setting G = � = 0). Here, we review this ‘GNG’ vortex in elliptico-
polar coordinates.

The GNG vortex corresponds to a steady axisymmetric flow in
elliptico-polar coordinates in vertical hydrostatic equilibrium, so
that ∂t = ∂ϕ = vs = vz = 0 and vϕ = vϕ(s). The momentum equa-
tions then read

0 = v2
ϕ

s
− 1

2
(ξ− cos 2ϕ + ξ+)

∂η

∂s

+ �vϕχ (ξ− cos 2ϕ + ξ+) + q�2 s (cos 2ϕ + 1) , (13)

0 = ξ−
2

sin 2ϕ
∂η

∂s
− �χξ−vϕ sin 2ϕ − q�2s sin 2ϕ,

0 = z�2 + ∂η

∂z
, (14)

where ξ± = 1 ± 1/χ2, and

η ≡ c2
s ln ρ (15)

is the gas enthalpy.
Since ∂ϕ = 0 by construction, the trigonometric coefficients in

equations (13) and (14) must vanish. Then we obtain the flow solu-
tion

vϕ(s) = −�vs with �v =
√

2q

χ2 − 1
�. (16)

We have chosen the sign for �v so that the flow is anticyclonic
(Bodo et al. 2007). The corresponding density distribution is given
via

ln
ρ

ρc
= − s2

2H 2
eff

− z2

2H 2
, (17)

where ρc is the density at s = z = 0 and the characteristic horizontal
size Heff is

Heff ≡ H

F
, (18)

with

F 2(χ ; q) ≡ 2

ξ−

⎡⎣
√

2q
(
χ2 − 1

)
χ

− q

⎤⎦ . (19)

Note that, in a Keplerian disc, the requirement F2 > 0 implies
non-self-gravitating vortices only exist with aspect ratios χ > 2.
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Figure 1. Characteristic horizontal vortex size, given by equation (23), as
a function of the aspect ratio, for a range of self-gravity parameters Q3D.

3.2 Effect of self-gravity on the GNG vortex density field

The GNG solution is not compatible with self-gravity because the
trigonometric coefficients of the Poisson equation in elliptico-polar
coordinates do not vanish (see equation A6). This is because the
gravitational potential of an ellipsoidal density distribution does not
have the same symmetry, except for s → 0 (Chandrasekhar 1969).

In order to get a sense of the effect of self-gravity, let us consider
the region about s = 0 (vortex centroid), and simplify further by
neglecting vertical stratification, so ∂z = z = 0. For this cylindrical
problem, we assume the self-gravitational potential has the form

� = 1

2
As2 + const., (20)

for small s, where A is a constant. Equation (20) is consistent with
the Poisson equation near the origin provided that

A = �2

Q3Dξ+
. (21)

Including self-gravity in the momentum equations amounts to the
replacement η → η + �. Then

∂ ln ρ

∂s
= − s

H 2
eff

− 1

c2
s

∂�

∂s
= − s

H 2
eff

(
1 + 1

Q3Dξ+F 2

)
≡ − s

H 2
eff,sg

, (22)

where we have inserted the above approximation for �. Writing
Heff, sg = H/Fsg, we have

F 2
sg(χ,Q3D; q) ≡ H 2

H 2
eff,sg

= F 2 + 1

Q3Dξ+
. (23)

Thus, self-gravity reduces the characteristic vortex size by increas-
ing F2 to F2 + 1/Q3Dξ+.

In Fig. 1 we plot the characteristic vortex size Heff, sg as a function
of the aspect ratio and self-gravity. The characteristic vortex size
is insensitive to its aspect ratio for χ � 4. At a fixed χ the vortex
size is reduced by self-gravity, but this effect is small for elon-
gated vortices. Notice the minimum allowed aspect ratio (defined
by F 2

sg(χ ) = 0) is reduced by self-gravity. We show this in Fig. 2:
as Q3D → 0 the minimum aspect ratio tends to unity.

Our estimate above differs from Adams & Watkins (1995), who
found that self-gravity increases the size of a circular vortex. By
contrast, Figs 1 and 2 indicate self-gravity reduces the size of elliptic
vortices; and that circular vortices are only allowed in strongly self-
gravitating discs.
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Figure 2. Minimum allowed aspect ratio of the self-gravity-modified GNG
vortex as a function of the self-gravity parameter Q3D.

3.3 Effect of self-gravity on the GNG vortex vorticity field

In Appendix B, we give a more careful discussion of the effect of
self-gravity. There, we also consider how self-gravity modifies the
distribution of vertical vorticity of the GNG vortex. This effect is
not obvious since potentials do not directly source vorticity.

We find the vorticity perturbation due to self-gravity is


ω ∝ (4�v − �χξ+)

(
s

Heff

)4

(24)

near the vortex centre (see equation B37). For the GNG solution
this implies that 
ω < 0 for χ � 2.5. As we will be considering
elongated vortices in practice, we expect that self-gravity enhances
the GNG vortex by making its vorticity more negative. However,
this is a small effect as the above estimate is restricted to s � Heff.
Adams & Watkins (1995) reached a similar conclusion for circular
vortices, where they find self-gravity does not modify the vortex
velocity field.

4 N U M E R I C A L S I M U L AT I O N S

We simulate the evolution of a single vortex in the 3D, self-
gravitating shearing box using the ATHENA code (Stone et al. 2008)
to evolve equations (2)–(4). We adopt standard numerical config-
urations: third-order reconstruction, a Roe solver, and a Corner
Transport Upwind (CTU) integrator. Disc self-gravity is solved via
Fast Fourier Transform, but assuming a vacuum beyond the vertical
boundaries. We also use orbital advection (Stone & Gardiner 2010).

4.1 Grid set-up and boundary conditions

The simulation domain is x ∈ [−Lx, Lx]/2, uniformly spaced with
Nx grid points; and similarly for the y and z directions. Our fiducial
box size and resolution are (Lx, Ly, Lz) = (16H, 32H, 6H) with (Nx,
Ny, Nz) = (512, 512, 192), or 32 cells per H in the x, z directions
and 16 cells per H in y. We use a lower resolution in the azimuth
since we consider elongated vortices. The box size and numerical
resolution are a compromise between having a sufficiently large box
to minimize the influence of neighbouring vortices due to periodic
boundary conditions (see below), and having enough resolution to
capture the EI. We find this set-up makes it feasible to simulate up
to 2000 orbits. For selected cases we also double the x resolution.

We apply periodic boundary conditions in the y direction and
shear-periodic boundary conditions in x. In the z direction we apply
reflective boundary conditions for the momenta, and extrapolate the
density field assuming vertical hydrostatic equilibrium. In addition,

we apply damping for |x| ∈ [0.8Lx, Lx] in which the hydrodynamic
variables are relaxed towards their initial values on a time-scale of
0.01 orbits. This is done to minimize spiral density waves launched
by neighbouring vortices.

4.2 Units and self-gravity parameter

We adopt computational units such that H = cs = 1, then � = 1
as well. Time is quoted in units of the orbital period at the fiducial
radius, P0 = 2π /�. The initial mid-plane density is ρ0 = 1. In
ATHENA, the strength of self-gravity is parametrized by the value of
4πG. We specify it through Q3D = 1/4πG in computational units.

For the disc models considered in this work, the initial density
distribution is approximately Gaussian, ρ � ρ0exp (−z2/2H2). Then
our self-gravity parameter Q3D is related to the classic Toomre
parameter Q by

Q3D �
√

π

8
Q. (25)

Thus, using Q or Q3D is immaterial as they only differ by a factor of
the order of unity. We will label our simulations with Q3D, however,
since this is the natural choice for 3D discs.

4.3 Initial condition and vortex perturbation

The GNG vortex described above is useful for analytic discussion
due to its simple form, but is inconvenient to set as initial conditions
in shearing box simulations because it is unbounded in the horizontal
plane, which does not respect the standard shearing box boundary
conditions. In a global disc, we expect the flow far from the vortex
to return to orbital motion about the star.

We thus initialize an axisymmetric, 3D shearing box as described
in Section 2 and apply the GNG vortex flow as a perturbation:


vx = �v

χ
y exp

(−m2
)
, (26)


vy = (q�x − �vχx) exp
(−m2

)
, (27)

with

m2(x, y) ≡ x2

b2
+ y2

a2
= 1

b2

(
x2 + y2

χ2

)
, (28)

where (a, b) are the semimajor and semiminor axes of the vortex
perturbation, respectively. Near the origin, the total velocity field
is approximately that of the GNG vortex, while far from it one
recovers the Keplerian shear flow.

We introduce the above velocity perturbations through source
terms in the horizontal momentum equations over a time-scale of
10P0. We specify the perturbation radial size b and aspect ratio χ ,
and obtain the appropriate value of �v from equation (16). Figs 3
and 4 show that the initial vortex, formed by perturbing the disc
with the GNG solution, is insensitive to Q3D. The self-gravitating
vortex is slightly more stratified (as found by Lin 2012a).

4.4 Diagnostics

Our key diagnostics are:

(i) The Rossby number

Ro ≡ ẑ · ∇ × v

2�
+ q

2
, (29)
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Figure 3. Vortex formed by perturbing the shearing box with the GNG
vortex solution. Left: self-gravitating disc with Q3D = 3. Right: effectively
non-self-gravitating disc with Q3D = 100. The colour scale corresponds to
the Rossby number Ro = (∇ × v) /2� + q/2 at the mid-plane. Here, χ is
the aspect ratio of the locus Ro = 0.5 min(Ro) marked by the white contour.
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Figure 4. Vertical structure of vortices formed by perturbing the shearing
box with the GNG vortex solution. Upper: self-gravitating disc with Q3D = 3.
Lower: non-self-gravitating disc with Q3D = 100. The colour scale is the
density perturbation relative to t = 0 (thus removing the background disc
stratification).

as a dimensionless measure of the vertical vorticity relative to the
background shear flow. The Rossby number can be used to measure
the strength of the vortex, which can be defined as a coherent,
extended region of Ro < 0 in the absence of turbulence (see Fig. 3).

(ii) The vertical Mach number

Mz ≡ |vz|
cs

(30)

to characterize vertical motions and thus the EI, which is expected
to be three-dimensional (Lesur & Papaloizou 2009).

(iii) The Reynolds and gravitational stresses

αR ≡ 1

c2
s

vx

(
vy + q�x

)
, (31)

αG ≡ 1

c2
s

∂x�∂y�

4πGρ
, (32)

to characterize turbulent activity. The total stress is α ≡ αR + αG.
(iv) Vortex characteristics. We calculate the evolution of the vor-

tex shape in post-processing, as follows. For this we use the vortex
density field because it remains smooth throughout the simulation.
(The vorticity field can involve small-scale structures so it becomes
difficult to define a large-scale coherent pattern.) We first locate
the horizontal coordinates (xv, yv) of max(ρ) near the origin. We
define the vortex boundary as the contour around (xv, yv) on which
ρ = 0.5max(ρ). This contour is usually close to an ellipse, except at
late evolution. We then define the semiminor and major vortex axes,
bρ and aρ , as half the length and width of the contour, respectively.
The corresponding aspect ratio is χρ = aρ /bρ .

We define the density-weighted average value of a quantity f as

〈f 〉 ≡
∫
V ρf dV

MV
, (33)

where

MV ≡
∫
V

ρdV , (34)

and the sample volume V is x ∈ [−b, b].

5 R ESULTS

Table 1 summarizes the simulations we have carried out. Our fidu-
cial set of runs, which are highlighted in bold and discussed in detail
below, consists of Q3, Q4, Q5, and Q100. The initial vortex aspect
ratio is χ = 10 with a radial size b = H/2. Note that axisymmet-
ric instability in 3D shearing boxes requires Q3D � 0.2 (Mamat-
sashvili & Rice 2010). Thus, all cases are gravitationally stable in
the absence of the vortex. (They correspond to Toomre parameters
Q � 5.)

5.1 Overview

Fig. 5 shows the evolution of average mass, Rossby number, vertical
Mach number, and stresses in the sample volume x ∈ [−b, b] and
time-averaged over five orbits. Without self-gravity (Q3D = 100) the
vortex decays by t ∼ 700P0, after which vertical motions remain
small (|vz| ∼ 10−3cs) and the average Rossby number is roughly
constant, as is MV . The box returns to a laminar state with α ∼ 10−7.

By contrast, the self-gravitating cases with 3 ≤ Q3D ≤ 5 are char-
acterized by an increase in MV for t � 300P0 with a corresponding
increase in |Ro|, |vz|, and α. These indicate sustained 3D turbulence
developed from the EI as the vortex spins up due to self-gravitational
growth. The self-gravitating vortices survive longer than the non-
self-gravitating case. However, the Q3D = 3 vortex weakens again
after becoming too strong (t � 1500P0, see Section 5.5).

Fig. 6 shows the evolution of the Toomre Q parameter measured
at the vortex centre, the density-based vortex semiminor axis bρ ,
and aspect ratio χρ . The Toomre parameter remains Q > 2, which
would suggest self-gravity to be unimportant in the classic sense.
Evidently, this is not the case: we observe vortex growth even with
a Toomre Q ∼ 8 initially.
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Table 1. Summary of simulations. In all runs an initial phase (t � 300P0) of EI weakens/lengthens the vortex. The subsequent evolution is described below.
The fiducial runs are in bold and discussed in the text.

Run Q3D zmax χ Nx/Lx Vortex evolution

Q100 100 3H 10 32/H Vortex destroyed by initial EI and decays into an axisymmetric density bump.
Q100z2HR 100 2H 10 64/H Vortex destroyed by the initial EI.
Q5 5 3H 10 32/H Vortex survives until the end of the simulation (t = 2000P0) with a

turbulent core with 3D motions.
Q4 4 3H 10 32/H Similar to Q5, but the vortex undergoes an azimuthal collapse from

t ∼ 1500P0 when αR � αG in the vortex and oscillations in |vz| develop.
For t � 1700P0 max|vz| appears outside the vortex core. An overdense
vortex remains at the end of the simulation.

Q4HR 4 3H 10 64/H Vortex destroyed by the initial EI.
Q4z2HR 4 2H 10 64/H Vortex survives with a turbulent core.
Q4c5 4 3H 5 32/H Vortex destroyed by initial EI.
Q4c20 4 3H 20 32/H Similar to Q4, but azimuthal collapse occurs sooner at t ∼ 1000P0.
Q3 3 3H 10 32/H Similar to Q3D = 4, but azimuthal collapse begins earlier (t ∼ 1200P0).

Vertical motions dominate outside the vortex core from t ∼ 1400P0. Vortex decays
after reaching a size of b ∼ H at t ∼ 1500P0 and inducing spiral shock waves
in the ambient disc.

Q3HR 3 3H 10 64/H Vortex survives with a turbulent core.
Q3z2HR 3 2H 10 64/H Vortex survives with a turbulent core. (Simulation terminated at t = 1200P0.)
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for different strengths of self-gravity. These correspond to runs labelled Q3,
Q4, Q5, and Q100 in Table 1.
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150 and is therefore not shown. Dashed lines in the middle panel are linear
fits to the growth in bρ .

The vortex aspect ratio first increases as the EI weakens the
vortex. Without self-gravity the vortex eventually decays into a
ring. For Q3D = 5 the aspect ratio is maintained at χρ ∼ 14–15. For
Q3D = 3, 4 the aspect ratio decreases, first slowly then rapidly from
t ∼ 1200P0, 1500P0 for Q3D = 3, 4, respectively. Notice this drop
coincides with self-gravity becoming dominant (αG > αR).

Finally, in Fig. 7 we compare the stresses averaged over the
simulation domain excluding buffer zones. These are qualitatively
similar to stresses measured at the box centre, but the total stress
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Figure 7. Stresses averaged over the simulation domain for the fiducial
runs.
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Figure 8. Hydrodynamic turbulence due to the EI of a 3D vortex in a self-
gravitating disc (upper panels), and in a non-self-gravitating disc (lower
panels). Comparing the upper and lower panels shows that hydrodynamic
turbulence can be sustained (and grows) in the presence of self-gravity.
Colours show the Rossby number Ro = (∇ × v) /2� + q/2 at z = 0.

is always dominated by the Reynolds contribution. This reflects
the fact that all of the discs under consideration are weakly self-
gravitating in the classic sense.

5.2 Elliptic instability

We find early vortex evolution and weakening (t � 300P0) are
driven by EI and independent of self-gravity.1 The EI is signified
by the exponential increase in

√〈v2
z 〉 in t � 100P0 with a growth

rate γ � 0.01� and saturating at
√〈v2

z 〉 ∼ 0.01cs in all cases. This
is consistent with previous non-self-gravitating studies of the EI,
and the weak dependence on self-gravity is expected since the EI
is incompressible (Lesur & Papaloizou 2009). The left-hand panels
in Fig. 8 show the result of the EI is small-scale hydrodynamic
turbulence. The subsequent evolution then depends on self-gravity.

1However, adjustment to the background Keplerian shear may also have
minor contributions to the early vortex evolution.
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Figure 9. Secular vortex evolution, after the initial development of EI
and corresponding hydrodynamic turbulence. Top: a self-gravitating disc.
Bottom: a non-self-gravitating disc. Colours show the relative density per-
turbation at the mid-plane.

5.3 Secular vortex growth and sustained turbulence

Fig. 8 compares the secular evolution of the vortex after the initial
EI. In both self-gravitating and non-self-gravitating cases, the initial
EI results in an irregular vorticity field (t = 250P0). However, it then
reorganizes into a larger, coherent vortical structure by t = 500P0,
which serves as initial conditions for secular evolution. This initial
vortex ‘revival’ may be due to the Kelvin–Helmholtz instability of
vorticity strips that result from the shearing of vorticity seeds by
the background shear flow left by the initial EI (Lithwick 2007).
This second-generation vortex then undergoes EI again. However,
in the non-self-gravitating case the vortex simply decays: we do
not observe the reemergence of a large-scale coherent vortex due to
Lithwick’s mechanism.

By contrast, we find that in self-gravitating discs the large-scale
vortex persists with small-scale 3D hydrodynamic turbulence in its
core (Fig. 8, upper panel). The vortex undergoes secular growth
from t ∼ 300P0 to the end of the simulation for Q3D = 5, but
only to t ∼ 1500P0, 1200P0 for Q3D = 4, 3, respectively. (In the
latter cases the vortex then undergoes an azimuthal collapse, see
Section 5.5.) Stresses 〈α〉 and vertical velocity fluctuations

√〈v2
z 〉

grow exponentially, but with a growth rate ∼2–9 × 10−4 �, sig-
nificantly slower than the initial EI because of the larger vortex as-
pect ratios than those imposed initially (Lesur & Papaloizou 2009).
However, notice

√〈v2
z 〉 grows faster with decreasing Q3D. This in-

dicates stronger EI, which is due to smaller vortex aspect ratios with
increasing self-gravity (see Fig. 6).

Fig. 9 shows the evolution of the density field during secular
growth. The self-gravitating vortex increases in density and size, but
with decreasing aspect ratio. Notice the density field remains smooth
even though the vorticity field is turbulent. This reflects the incom-

MNRAS 478, 575–591 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/1/575/4975783
by ACADEMIA SINICA LIFE SCIENCE LIBRARY user
on 14 June 2018



582 M.-K. Lin and A. Pierens

t=1575P0,z=0.0H,Ro

-15

-10

-5

0

5

10

15

y/
H

-0.32

-0.26

-0.19

-0.13

-0.06

 0.00

 0.07
Q3D=4

t=1600P0,z=0.0H,Ro

-0.22

-0.19

-0.15

-0.11

-0.08

-0.04

-0.00
Q3D=4

t=1625P0,z=0.0H,Ro

-0.31

-0.25

-0.19

-0.13

-0.07

-0.01

 0.05
Q3D=4

t=1650P0,z=0.0H,Ro

-0.24

-0.20

-0.16

-0.12

-0.08

-0.04

-0.00
Q3D=4

t=1575P0,102<vz
2>1/2/cs

-0.4 -0.2 0.0 0.2 0.4
x/H

-15

-10

-5

0

5

10

15

y/
H

 0.14

 1.24

 2.35

 3.45

 4.56

 5.66

 6.76
Q3D=4

t=1600P0,102<vz
2>1/2/cs

-0.4 -0.2 0.0 0.2 0.4
x/H

 0.04

 0.59

 1.14

 1.69

 2.24

 2.78

 3.33
Q3D=4

t=1625P0,102<vz
2>1/2/cs

-0.4 -0.2 0.0 0.2 0.4
x/H

 0.21

 0.99

 1.76

 2.54

 3.32

 4.09

 4.87
Q3D=4

t=1650P0,102<vz
2>1/2/cs

-0.4 -0.2 0.0 0.2 0.4
x/H

 0.10

 0.87

 1.64

 2.41

 3.18

 3.95

 4.72
Q3D=4

Figure 10. Example of episodic EI in a self-gravitating 3D vortex. Top:
Rossby number. Bottom: vertical Mach number.

pressible nature of the EI. By contrast, the non-self-gravitating vor-
tex is destroyed by the initial EI, leaving an axisymmetric density
ring.

We note that during secular growth the monotonic increase in
the vortex mass, rotation, and semiminor axis (Figs 5 and 6) in the
self-gravitating cases proceed more rapidly than the decrease in its
aspect ratio. (For Q3D = 5 the vortex aspect ratio is nearly constant.)
A possible reason is that vertical stratification due to self-gravity
(see Fig. 4) makes the secular dynamics more similar to that of 2D
vortices (Umurhan & Regev 2004; Johnson & Gammie 2005; Shen
et al. 2006). These studies show that 2D vortices tend to merge
into larger vortices (Godon & Livio 1999). Though merging cannot
occur for our single, isolated vortex, secular evolution towards larger
scales can be expected if the system behaves two-dimensionally due
to the inverse cascade of energy (Kraichnan & Montgomery 1980).
However, the additional stratification brought about by self-gravity
is small; thus this effect is unlikely important for the present Q3D

values. Here, the vortex growth in its radial size may be simply due
to mass accretion.

5.4 Episodic bursts

We find secular vortex growth ends when αR ∼ αG ∼ 10−5, at
which point we observe episodic bursts of EI in self-gravitating
cases. This is reflected in Fig. 5 as oscillations in

√〈v2
z 〉, starting

from t ∼ 1000P0, 1500P0 for Q3D = 3, 4, respectively; and it only
just begins to develop at the end of the Q3D = 5 simulation. Fig. 10
shows snapshots of this episodic behaviour for Q3D = 4 (where
the simulation output frequency conveniently coincides with the
burst). The vortex oscillates between having small-scale turbulence
(t = 1575P0, 1625P0) and a coherent patch of negative vorticity
(t = 1600P0, 1650P0). Notice in that max|Ro| also oscillates.

We comment that the oscillations are not reflected by the Rossby
number in Fig. 5 because Ro has been averaged over x ∈ [−b, b],
which demonstrates that overall the vortex continues to strengthen.
Nevertheless, we checked that |Ro| does oscillate during the burst
phase when the sampling volume is limited to near the vortex centre.

This episodic behaviour suggests competition between vortex
growth due to self-gravity and vortex destruction by the EI. As
the vortex grows, it spins up (|Ro| increases) and its aspect ratio
decreases. This feeds the EI, which converts some of the vortex’s
large-scale, planar rotation into small-scale 3D turbulence (signified
by an increasing |vz|). The EI activity decays, but is re-triggered
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Figure 11. Evolution of the Q3D = 3 vortex during azimuthal collapse,
when its aspect ratio drops rapidly. Left: mid-plane density perturbation.
Middle: mid-plane Rossby number. Right: average vertical Mach number.
Here, ellipses in Ro are drawn by inspection, and correspond to the loci
Ro = 0.65 min(Ro) and Ro = 0.3 min(Ro) in the top and bottom snapshots,
respectively.

once the vortex reforms as it grows via self-gravity. This growth
may be partly attributable to the removal of the vortex’s internal
rotation by the EI and enabling secular gravitational instabilities
(see Section 6.2).

A similar bursty behaviour has been reported in 3D simulations
of vortex amplification by the sub-critical baroclinic instability in
competition with EI (Lesur & Papaloizou 2010, their fig. 16). We
discuss this analogy further in Section 6.3.

5.5 Azimuthal collapse, gap opening, and self-destruction

As Reynolds stresses (αR) increase beyond the gravitational stresses
(αG), the vortex in the Q3D = 3, 4 discs enters a second, faster
collapse phase where its aspect ratio rapidly drops, although its
radial size continues to grow, see Figs 5 and 6. This azimuthal
collapse phase corresponds to t ∈ [1200, 1500]P0 and t ∈ [1500,
2000]P0 for Q3D = 3, 4, respectively. The total stress also increases
rapidly (see Fig. 7).

Fig. 11 shows azimuthal collapse for the Q3D = 3 simulation.
The vortex exits the bursty phase with a coherent vorticity patch of
an aspect ratio χ ∼ 7 (upper middle panel). Notice max|vz| moves
outside the vortex core as its aspect ratio decreases (lower right-hand
panel). This is in fact consistent with Lesur & Papaloizou (2009),
who find the EI occurs outside the vortex core for an intermediate
range of aspect ratios in the absence of buoyancy, as is the case
for isothermal gas considered here. In their specific case of Kida
vortices (Kida 1981), this range is 4 � χ � 6, but the corresponding
range may differ for the vortices in our simulations.

We find azimuthal collapse is associated with vortex-driven spiral
density waves. Spiral density waves are naturally excited by vor-
tex modes in compressible gas (Bodo et al. 2005; Heinemann &
Papaloizou 2009; Mamatsashvili & Chagelishvili 2007). However,
as the vortex half-width approaches H, these spiral density waves
steepen into shocks (Paardekooper et al. 2010) and transfer angular
momentum and energy away from the vortex (Bodo et al. 2007).
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These spiral shocks can also be identified visually in Fig. 11 at
t = 1500P0 in both the density and vorticity maps.

Azimuthal collapse is terminated once the vortex half-width ex-
ceeds ∼H. This is seen in Fig. 5 as the rapid drop in |Ro| towards
the end of the simulation with Q3D = 3. The corresponding decrease
in MV indicates mass-loss by the vortex to the ambient disc. This
final vortex weakening is likely related to the strong spiral shocks
induced by the vortex once it becomes too large in the radial direc-
tion. We observe a similar self-destruction behaviour as above in an
extended run of the Q3D = 4 case. However, a proper study of this
final stage requires global simulations to minimize the influence of
radial boundary conditions. We thus limit our discussion here to
when bρ � H. (See Appendix C for examples of vortex evolution
in 2D, global discs.)

Nevertheless, our observation that vortex radial size being limited
by the associated density waves is consistent with previous studies
of vortex evolution in 2D. The critical radial extent is expected to be
∼H (Godon & Livio 1999), beyond which the vortex flow becomes
sonic (Paardekooper et al. 2010). This is equivalent to the Jeans
length λJ ∼ O(QH) in a self-gravitating disc with Q ∼ 1. Indeed,
Mamatsashvili & Rice (2009) suggest 2D vortices are limited to
λJ in their radial extent. They find in gravito-turbulent discs that
upon reaching λJ, 2D vortices weaken and are sheared away by
the background flow (see also Lyra et al. 2009b). In our discs with
Q > 1, λJ is somewhat larger than H. The vortex width limit in
our 3D simulations is thus similar to that in corresponding 2D,
non-self-gravitating discs.

Notice in Fig. 11 that two shallow gaps have developed on either
side of the vortex. Similar double-gap structures appear in low-
mass planet–disc simulations (e.g. Zhu et al. 2013; Dong et al.
2017). This suggests that the vortex can interact with the ambient
disc in a similar way to disc–planet interaction. The strength of
gravitational interaction between the vortex and the ambient disc
can be estimated via the total mass Mpert enclosed in the elliptical
patch (x2 + y2/χ2

ρ )/b2
ρ � 1:

qv ≡ Mpert

M∗h3
= χρ

Q

(
bρ

H

)2

, (35)

where M∗ is the mass of the central star and h ≡ H/R is the character-
istic disc aspect ratio at the fiducial radius of the shearing box. Using
Fig. 6 we find qv ∼ 1.3 for the Q3D = 3 simulation at t = 1500P0.
This can be compared to the thermal condition for gap-opening
by disc–planet interaction, qv � 1 (Crida et al. 2006). Thus, gap-
opening by the vortex can indeed be expected. However, we expect
gap-opening by an elliptical, extended vortex to be weaker than by
a point-mass planet of the same mass.

The vortex-induced spiral shocks may also contributed to mass
accretion on to the vortex, similar to shock-driven accretion in
circumplanetary discs (Zhu et al. 2016). Both (1) the increasing
vortex mass; and (2) the decreasing vortex aspect ratio are expected
to enhance the vortex-driven spiral density waves. Thus, azimuthal
collapse proceeds more rapidly than the secular growth, when the
associated spiral waves are weak. Turbulence outside the vortex
core may also contribute to angular momentum removal and hence
mass accretion by the vortex.

5.6 Vortex aspect ratio, numerical resolution, and box height

We performed several variations of the fiducial runs described
above. These are summarized in Table 1 and include different as-
pect ratios for the initial vortex perturbation (χ ), the radial resolution
(Lx/Nx), and the vertical domain size (zmax),
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Figure 12. Comparison between vortex evolution in a Q3D = 3 disc, but
different radial resolutions: Nx/Lx = 32/H (black) and 64/H (orange). The
vortex persists in both simulations.

For the Q3D = 4 disc we ran additional cases with χ = 20
and χ = 5 for the initial vortex perturbation. The former behaves
similarly to our fiducial run with χ = 10. However, for χ = 5 the
vortex is destroyed by the initial phase of EI, similar to the non-self-
gravitating case Q100. This suggests that self-gravity cannot save
vortices born with small aspect ratios.

We also repeated some runs with twice the radial resolution.
These are compared in Fig. 12 for the Q3D = 3 disc. We find the
initial EI growth rate is converged, but with better resolution the
resulting turbulence leads to a weaker vortex to serve as initial
conditions for secular growth. This is shown in Fig. 13 as the more
elongated vortex at t = 500P0 compared to that in Fig. 8. Since the
EI turbulence is better resolved, it has a more destructive effect and
the subsequent secular growth rate is slower and a 3D vortex with a
turbulent core persists until the end of the simulation.

We find that reducing the vertical domain also enhances vortex
survival, which is as expected as the system is forced to behave more
two-dimensionally (Lithwick 2009). This is demonstrated in Fig. 14
with simulations using Q3D = 4. Starting from the fiducial run with
zmax = 3H, we double the radial resolution and find the vortex is
destroyed by the initial EI. (Comparing with Fig. 13 confirms that
self-gravity enhances vortex survival.) However, retaining the same
resolution but setting zmax = 2H results in a persistent 3D vortex
with a turbulent core, also shown in Fig. 15.
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Figure 13. Vortex evolution in the Q3D = 3 disc but with double the radial
resolution than the fiducial runs.

These additional runs indicate that, in order to undergo self-
gravitational growth, a 3D vortex needs to maintain its large-scale
internal flow. Thus the initial EI cannot be too strong. This can be
limited by diffusion (numerical in our case) and/or limited verti-
cal domain. Notice in the simulations where a vortex persists that
αG > αR during secular growth, as observed in the standard run. We
suggest this condition required for long-term vortex survival. If the
initial EI turbulence destroys the large-scale vortex topology, then
there is no vortex for self-gravity to maintain or amplify.

6 D ISCUSSION

6.1 Self-gravitational vortex growth and hydrodynamic
turbulence

Our main finding is that self-gravitating 3D vortices can survive
the EI. Self-gravity enables vortex survival and growth even when
the Toomre parameter Q ∼ 5, which is significantly larger than that
required for axisymmetric instability in 3D shearing boxes (Q �
0.6, Mamatsashvili & Rice 2010). Thus, the presence of a vortex
reduces the gravitational stability of the flow.

We suggest that, provided the initial EI does not completely de-
stroy the large-scale vortex flow topology (see Sections 5.6 and 6.6),
the vortex can then slowly grow under its self-gravity. (Without self-
gravity the vortex always decays.) The growth spins up the vortex
and its aspect ratio decreases. This is expected for vortices in shear-
ing discs, e.g. the GNG vortex spin increases with decreasing χ (see
equation 16). Smaller aspect ratio vortices favour EI (Lesur & Pa-
paloizou 2009), which generates further hydrodynamic turbulence.
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Figure 14. Vortex evolution in discs with Q3D = 4 but different radial
resolutions and vertical domain sizes.

Figure 15. Effect of vertical domain size on vortex evolution. The disc
has Q3D = 4 and the simulations were performed with twice the fiducial
radial resolution. The vortex does not survive with zmax = 3H but does with
zmax = 2H.
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Figure 16. The ‘gravito-elliptic’ interpretation of the bursty behaviour ob-
served towards the end of secular vortex growth. A vortex spins up and its
aspect ratio decreases, generating hydrodynamic turbulence via the EI. The
associated turbulent viscosity favours gravitational instability by removing
rotational support against self-gravity.

The vortex persists during secular growth because the subsequent
EI is weak, as the vortex has been elongated by the initial EI. Our
numerical experiments indicate a necessary condition for vortex
survival is having gravitational stresses exceed Reynolds stresses
(αG � αR). It signifies the evolution being dominated by self-gravity
with hydrodynamic turbulence being a by-product.

To check that self-gravity can directly cause vortex growth, we
ran several 2D simulations in Appendix C. We find for sufficiently
strong self-gravity, the vortex can indeed grow without EI-induced
turbulence. However, growth does not occur in razor-thin discs if
Q3D ≥ 4, whereas we find growth in corresponding 3D simulations
with EI. This suggests that EI-induced hydrodynamic turbulence
may also contribute to gravitational instability, as discussed below.

6.2 Turbulence-enabled gravitational instability?

The EI converts the vortex’s internal large-scale, planar rotation into
small-scale 3D turbulence. However, removing rotation in a self-
gravitating flow allows gravitational collapse. This type of gravita-
tional instability relies on dissipative processes to remove rotational
stabilization (Lynden-Bell & Pringle 1974). Comparing our 3D sim-
ulations that have EI and show vortex growth and supplementary
2D simulations in Appendix C that show no EI or growth suggests
that EI turbulence may provide a similar effect; thus enabling vor-
tex growth at large Q. This picture is similar to secular gravitational
instabilities in viscous or dusty discs, whereby friction allows grav-
itational instabilities to develop even when Q > 1 (e.g. Schmit &
Tscharnuter 1995; Takahashi & Inutsuka 2014).

Gravitational instability catalysed by EI-induced turbulence leads
to the possibility of ‘gravito-elliptic’ feedback, illustrated in Fig. 16.
Vortex growth leads to hydrodynamic turbulence through the EI,
which helps further collapse via secular gravitational instabilities,
thus creating a cycle. The vortex attains a quasi-steady state if the
destructive effect of EI is balanced by gravitational instability. This
explains the ‘episodic bursts’ seen in our fiducial simulations when
αR ∼ αG (Section 5.4).

6.3 Analogy with SBI in 3D

The episodic EI bursts observed in Section 5.4 bear some parallel
to the SBI in 3D. The SBI is a mechanism for amplifying vortices
in non-isothermal discs and requires an unstable radial entropy
gradient and an appropriate thermal diffusion or cooling time-scale
(Lesur & Papaloizou 2010). Neither are present in our standard,
isothermal shearing boxes; Lesur & Papaloizou also found episodic
EI in 3D simulations of the SBI.

In 3D, the SBI competes with the EI (Lesur & Papaloizou 2010;
Lyra & Klahr 2011; Barge et al. 2016). These authors find the
resulting vortex maintains its large-scale flow, but also contains
small-scale, 3D hydrodynamic turbulence in its core. This is similar

to our self-gravitating vortices (e.g. Fig. 8). Self-gravity plays the
role of SBI in our simulations by amplifying the vortex.

The important difference is that for SBI there exists an explicit
baroclinic vorticity source, which comes from the global radial en-
tropy gradient. Self-gravity cannot directly source vorticity. How-
ever, the vortex can spin-up as it collapses due to self-gravity. The
result in both cases is that the vortex aspect ratio decreases, feeding
the EI, which tries to remove the large-scale vortex rotation.

6.4 Application to Rossby vortices

We can relate our simulations to vortex formation by the RWI
(Lovelace et al. 1999; Li et al. 2000, 2001). The RWI is a dy-
namical instability associated with radially structured discs. More
specifically, it requires a minimum in the disc’s potential vorticity
profile (=ω/�). Candidate sites include gap edges opened by plan-
ets (Li et al. 2009; Lyra et al. 2009a; Lin 2012a) and dead zone
boundaries (Lyra et al. 2008, 2009b). These isolated radial struc-
tures often involve length-scales of O(H), and are thus consistent
with our typical vortex half-widths (�H).

The expected initial aspect ratio of Rossby vortices is
χ = π /hmmax; here mmax ∼ 5–8 is the most unstable azimuthal
wavenumber of the RWI (Lin & Papaloizou 2011) and h = H/R is
the disc aspect ratio. For protoplanetary discs with h = 0.05–0.1 we
expect χ ∼ 4–12. Our nominal choice χ = 10 is consistent with
the lower bound on lower mmax, which is applicable to thin and/or
low-mass discs (Lin & Papaloizou 2011) as considered here. This
is also the limit where Rossby vortices can merge. Thus our model
could also correspond to a single, post-merger Rossby vortex.

6.5 Dust-trapping and observational implications

Our main result is that moderate disc self-gravity can help sustain
3D vortices in spite of the EI. This means that vortices are more
likely to be observed in the outer parts of protoplanetary discs,
where self-gravity becomes important. This could be relevant to
vortex formation via the RWI due to gap-opening planets at large
radii (Hammer, Kratter & Lin 2017) or the outer dead zone boundary
(Lyra, Turner & McNally 2015).

For definiteness, let us consider the class II circumstellar disc
models described in Kratter & Lodato (2016, their fig. 2a). For typ-
ical global accretion rates Ṁ ∈ [10−8, 10−7]M� yr−1, the Toomre
parameter ranges from Q � 10 at 30 au to Q � 5 at 100 au. These
are similar to the Q values in our simulations. Furthermore, at these
radii, heating is dominated by stellar irradiation (Chiang & Goldre-
ich 1997) and thus disc behaves almost isothermally; also consistent
with our equation of state. Note also our simulation time-scales of
O(103) orbits correspond 106 yr at 100 au, which is of the order of
the disc lifetime.

Our fiducial simulation (Q3D = 3 or Q � 5) corresponds to 100 au
in this physical disc model. Although Q > 2 is traditionally con-
sidered non-self-gravitating (Kratter & Lodato 2016), neglecting
self-gravity altogether would result in a weak vortex with vanishing
overdensity. However, properly including self-gravity gives a con-
centrated vortex (Fig. 9). This would suggest that the trapping of
dust – often the observable – is favoured in self-gravitating discs.

On the other hand, self-gravitating 3D vortices have turbulent
cores, which tends to expel dust particles due to turbulent dust
diffusion (Youdin & Lithwick 2007). To examine this effect we use
the dust-trapping model described in Lyra & Lin (2013) assuming
an underlying GNG vortex. They find the distribution of small,
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Figure 17. Normalized (mid-plane) dust density distribution obtained from
the dust-trap model of Lyra & Lin (2013) with vortex parameters taken from
the fiducial simulations. We fix the Stokes number St = 10−3.

passive dust particles within the vortex core is given by

ρd(s) = ρd,max exp

(
− s2

2H 2
v

)
, (36)

Hv ≡ H

f (χ )

√
δ

St + δ
, (37)

where St = �τ s is the Stokes number and τ s is the stopping
time characterizing dust–gas friction and δ is a dimensionless
parametrization of turbulent dust diffusion. The GNG vortex has
f(χ ) ∼ 0.7 for χ � 1 (see Lyra & Lin 2013, for details). Recall s is
a coordinate that labels elliptical streamlines in the vortex by their
semiminor axes (see Section 3).

We evaluate equation (37) using simulation results as input pa-
rameters. Assuming dust–gas interaction is dominated by drag
forces, we set δ = αR. We also use χρ in place of χ , but this is
immaterial since the function f is effectively constant for elongated
vortices.

In Fig. 17 we plot the expected distribution of dust particles
with St = 10−3. We only consider the secular growth stage with
EI turbulence occurring inside the vortex core, where Lyra & Lin’s
model is applicable. In all cases dust is initially concentrated towards
the centre, but over time it diffuses outwards due to the increasing
levels of hydrodynamic turbulence, which in turn is more vigorous
with increasing self-gravity. Thus we can expect the dusty vortices
to be wider in self-gravitating discs.

We comment that the above result for a single vortex may
not be applicable to strongly self-gravitating discs with gravtio-
turbulence/fragmentation (Gammie 2001). However, in that limit
it has also been shown that particle trapping is enhanced by self-
gravity (Gibbons, Rice & Mamatsashvili 2012; Gibbons, Mamat-
sashvili & Rice 2014, 2015; Shi et al. 2016).

6.6 Caveats and future directions

We have limited our study to classically stable discs, i.e. Q > 2
(or Q3D > 1). It would be interesting to study 3D vortex evolution
in strongly self-gravitating discs with Q � 2. However, in this

limit the vortex must be initialized with care. Simply perturbing
a strongly self-gravitating disc with the non-self-gravitating GNG
vortex flow may result in transient effects. This problem may also be
ill-posed because it is unclear if a single large-scale vortex can form
in strongly self-gravitating discs in the first place. For example, it
has been shown that the vortex-forming RWI can be suppressed by
self-gravity (Lin & Papaloizou 2011; Lovelace & Hohlfeld 2013).
Furthermore, classic gravitational instabilities can be expected in the
ambient disc, which would complicate the evolution of an isolated
vortex. We thus defer the strongly self-gravitating limit to a future
study.

Returning to the Q > 5 discs considered in our study, the addi-
tional runs described in Section 5.6 indicate that 3D vortices un-
dergo secular self-gravitational growth only if the initial EI-induced
turbulence does not destroy the large-scale vortex topology. In our
simulations the initial EI turbulence strength is limited by a reduced
vertical domain (Lithwick 2009) and/or numerical diffusion (Lesur
& Papaloizou 2009). Since our models are inviscid, true numerical
convergence may be difficult to achieve.

However, these effects may not be unrealistic. Numerical diffu-
sion may mimic other sources of low-level turbulent viscosity in
a protoplanetary disc (Umurhan et al. 2016a). Vortices can also be
limited in vertical extent if the background disc has a layered struc-
ture (Bai 2016). The presence of an active vortex-driving source
may also help to retain the large-scale vortex flow against the initial
EI. Nevertheless, future works should incorporate these physical
effects explicitly.

Local shearing box simulations do not permit a proper study
of vortex gap-opening and migration (Paardekooper et al. 2010),
which stem from global spiral density waves launched by the vortex.
Clearly, one must eventually perform global disc simulations of
self-gravitating 3D vortices. This is computationally challenging
because of the need to simultaneously resolve the small-scale EI.
Though some recent non-self-gravitating, global simulations have
done so (Barge et al. 2016; Richard et al. 2016), including 3D
self-gravity can significantly increase the computational cost.

However, our simulations show that even with EI-induced hy-
drodynamic turbulence, the vortex maintains a smooth density field
with moderate amplitude. Furthermore, elongated vortices do not
require high resolution in azimuth. This means that an accurate
global Poisson solver (with sub-H resolution) is not essential for
this problem.

We have purposefully neglected vortex-forming mechanisms to
isolate the effect of self-gravity on vortex evolution. Nevertheless,
future work should account for hydrodynamic instabilities that drive
vortex formation (RWI, ConO/SBI, ZVI, or VSI), which require
improved geometries and physics such as cooling.

Finally, we performed pure gas simulations and only estimated
the extent of vortex dust trapping in post-processing. It will be
desirable to conduct two-phase, gas–dust simulations to properly
capture the evolution of dust particles and the back reaction of drag
forces on the gas. The latter becomes important for high dust-to-
gas ratios, which can be expected in vortex centres (Fu et al. 2014;
Crnkovic-Rubsamen, Zhu & Stone 2015; Surville, Mayer & Lin
2016). A simple starting point to model these effects is the one-
fluid, thermodynamic model of dusty gas recently developed by
Lin & Youdin (2017).

7 SU M M A RY

In this paper we study the evolution of 3D vortices in self-gravitating
protoplanetary discs via customized numerical simulations in the
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shearing box framework. We find self-gravity can help 3D vortices
survive against elliptic instabilities that would otherwise destroy
them in non-self-gravitating discs. With moderate self-gravity the
result is a 3D vortex with a turbulent core. We emphasize that
our disc models are gravitationally stable in the traditional sense
that Toomre Q values safely exceed unity; yet we observe vortex
growth, albeit on time-scales of O(103) orbits. This indicates that
the presence of a vortex reduces the long-term stability of the flow.

In addition to hydrodynamic turbulence as a by-product of self-
gravitational vortex growth via elliptic instabilities, we suggest sec-
ular gravitational instabilities can be catalysed by the hydrodynamic
turbulence that results from the EI. The EI removes rotational sup-
port against self-gravity, which favours gravitational instability; but
the subsequent spin-up of the vortex feeds the EI. There is competi-
tion between the vortex destruction by the EI and vortex growth due
to self-gravity (either directly or assisted by hydrodynamic turbu-
lence); thus a quasi-steady state is possible. Our simulations suggest
vortices survive more easily, and hence are more likely observed,
in protoplanetary discs at large radii.
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APP ENDIX A : SHEARING BOX EQUATIONS I N
ELLIPTICO- P OLAR C OORDINATES

In elliptico-polar coordinates (s, ϕ, z) the divergence and advec-
tive derivative operators have identical form to that in the usual
cylindrical coordinates. That is,

∇ · W = 1

s

∂

∂s
(sWs) + 1

s

∂Wϕ

∂ϕ
+ ∂Wz

∂z
, (A1)

W · ∇ = Ws

∂

∂s
+ Wϕ

s

∂

∂ϕ
+ Wz

∂

∂z
, (A2)

for any vector field W . The continuity equation thus retains the
same form as in the Cartesian box, as does the vertical momen-
tum equation. The horizontal momentum equations, however, are
modified to read

∂vs

∂t
+ v · ∇vs − v2

ϕ

s

= 1

2
(ξ+ + ξ− cos 2ϕ)

(
2�χvϕ − ∂η̃

∂s

)
+ ξ−

2
sin 2ϕ

(
2�χvs + 1

s

∂η̃

∂ϕ

)
+ q�2s (cos 2ϕ + 1) (A3)

∂vϕ

∂t
+ v · ∇vϕ + vϕvs

s

= ξ−
2

sin 2ϕ

(
∂η̃

∂s
− 2�χvϕ

)
−1

2
(ξ+ − ξ− cos 2ϕ)

(
1

s

∂η̃

∂ϕ
+ 2�χvs

)
− q�2 s sin 2ϕ,

(A4)

where η̃ = η + � and

ξ± = 1 ± 1

χ2
. (A5)

Finally, the Poisson equation becomes[
1

2
(ξ− cos 2ϕ + ξ+)

∂2

∂s2
+ 1

2s2
(ξ+ − ξ− cos 2ϕ)

∂2

∂ϕ2

− ξ−
s

sin 2ϕ
∂2

∂ϕ∂s
+ 1

2s
(ξ+ − ξ− cos 2ϕ)

∂

∂s
+ ξ−

s2
sin 2ϕ

∂

∂ϕ

+ ∂2

∂z2

]
� = 4πGρ. (A6)

APPENDI X B: LI NEAR R ESPONSE O F TH E
G N G VO RT E X TO I T S G R AV I TAT I O NA L
POTENTIAL

We explore the perturbative effect of introducing self-gravity on the
GNG vortex solution. We simplify the problem by considering an
unstratified disc with no vertical velocities. Then vz = ∂z = 0. This
should be an adequate approximation for regions close to the vortex
centre (s, z → 0). We set

G → 0 + δG. (B1)

This induces perturbations

ρ → ρ(s) + δρ, (B2)

vs → 0 + δvs, (B3)

vϕ → −�vs + δvϕ, (B4)

� → 0 + δ�. (B5)

The background flow, vϕ(s) and ρ(s), is given by the non-self-
gravitating GNG vortex solution (equations 16 and 17) with the
vertical dimension suppressed. Since the basic state is symmetric in
ϕ, we Fourier analyse in azimuth and write⎡⎢⎢⎣

δρ

δvs

δvϕ

δ�

⎤⎥⎥⎦ = Re
∞∑
l=0

⎡⎢⎢⎣
ρQl/c

2
s

iUl

Vl

�l

⎤⎥⎥⎦ exp ilϕ. (B6)

We insert the above perturbations into the steady-state continuity,
horizontal momentum, and Poisson equations and linearize. We then
multiply by e−inϕ , and integrate in ϕ to obtain

1

s
(sρUn)′ + n

s
ρVn − n�v

ρQn

c2
s

= 0 (B7)

from the continuity equation, where
′
denotes d/ds; and the horizon-

tal momentum equations give

2�vVn + n�vUn = −1

2

[
ξ+η̃′

n + ξ−
2

(
η̃′

n−2 + η̃′
n+2

)]
+ ξ−

4s
[(n − 2) η̃n−2 − (n + 2) η̃n+2]

+ 1

2
�ξ−χ (Un−2 − Un+2)

+�χ

[
ξ+Vn + ξ−

2
(Vn−2 + Vn+2)

]
, (B8)

2�vUn + n�vVn = ξ−
4

(
η̃′

n−2 − η̃′
n+2

) + 1

2s

{
nξ+η̃n

− ξ−
2

[(n − 2)η̃n−2 + (n + 2)η̃n+2]

}
− 1

2
�ξ−χ (Vn−2 − Vn+2)

+�χ

[
ξ+Un − ξ−

2
(Un−2 + Un+2)

]
, (B9)

where

η̃n ≡ Qn + �n. (B10)
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Adding and subtracting the horizontal momentum equations give
the more compact form

ξ+
2

(
η̃′

n + n

s
η̃n

)
+ ξ−

2

(
η̃′

n−2 − n − 2

s
η̃n−2

)
= [(2 − n) �v − �χξ+] Yn + �χξ−Xn−2, (B11)

ξ+
2

(
η̃′

n − n

s
η̃n

)
+ ξ−

2

(
η̃′

n+2 + n + 2

s
η̃n+2

)
= [�χξ+ − (n + 2) �v] Xn − �χξ−Yn+2, (B12)

where

Xn ≡ Un + Vn, (B13)

Yn ≡ Un − Vn. (B14)

The linearized Poisson equation is

ξ−
4

[
d2

ds2
− (2n − 3)

s

d

ds
+ n(n − 2)

s2

]
�n−2

+ ξ+
2

(
d2

ds2
+ 1

s

d

ds
− n2

s2

)
�n

+ ξ−
4

[
d2

ds2
+ (2n + 3)

s

d

ds
+ n(n + 2)

s2

]
�n+2

= 4πδGρ(s)δn0. (B15)

Here δij is the Kronecker delta.

B1 The n = 2 problem

To make analytic progress we truncate the series expansion (equa-
tion B6) at n = 2. Then for n = 0 we have

ξ+
2 η̃′

0 = (�χξ+ − 2�v) V0, (B16)

ξ+
2

η̃′
0 + ξ−

2

(
η̃′

2 + 2

s
η̃2

)
= (�χξ+ − 2�v) V0 − �χξ−Y2,

(B17)

where we have utilized the fact that U0 = 0 as implied by the
continuity equation (equation B7) for n = 0. Next, for n = 2 we
have

ξ+
2

(
η̃′

2 + 2

s
η̃2

)
+ ξ−

2
η̃′

0 = �χξ−V0 − �χξ+Y2, (B18)

ξ+
2

(
η̃′

2 − 2
s
η̃2

) = (�χξ+ − 4�v) X2. (B19)

Equations (B16)–(B19) imply

η̃′
0 = V0 = 0, (B20)

2�vV2 = ξ+
s

η̃2 + (�χξ+ − 2�v) U2. (B21)

Hence, an ODE for η̃2 is

η̃′
2 + 1

s

(
2 − �χξ+

�v

)
η̃2 + �χ

(
4 − �χξ+

�v

)
U2 = 0.

(B22)

Next, the n = 2 continuity equation, after using equations (B11)
and (B21), becomes

U ′
2 +

[
ρ ′

ρ
+ 1

s

(
�χξ+
�v

− 1

)]
U2

+
(

ξ+
s2�v

− 2�v

c2
s

)
η̃2 + 2�v

c2
s

�2 = 0. (B23)

Further eliminating U2 gives a second-order ODE for η̃2

η̃′′
2 +

(
ρ ′

ρ
+ 1

s

)
η̃′

2 +
[

λρ ′

sρ
+ 2�χ (λ + 2)

�v

c2
s

− 4

s2

]
η̃2

= 2�χ (λ + 2)
�v

c2
s

�2, (B24)

where λ ≡ 2 − �χξ+/�v. We require η̃′
2(0) = η̃2(0) = 0.

Equation (B24) describes the non-axisymmetric response of the
GNG vortex to the potential �2. We are interested in the case where
the potential arises from the vortex mass itself. Thus, �2 is given
by a solution to the linearized Poisson solution.

B2 Approximate solution as s → 0

Here, we consider the approximate solution to equation (B24) for
small s. We first obtain the potential solution �2. To do so in a
tractable manner, we apply the ‘source term approximation’ to solve
the Poisson equation as follows.

We first solve the n = 0 cylindrical Poisson equation neglecting
the n = 2 term,

�′′
0 + 1

s
�′

0 = 2�2

ξ+Q3D
exp

(−s2/2H 2
eff

)
. (B25)

The solution is

�′
0 = 2�2H 2

eff

ξ+Q3D

1

s

[
1 − exp

(−s2/2H 2
eff

)]
. (B26)

We then use the above solution for �′
0 as a source term in the

n = 2 Poisson equation

�′′
2 + 1

s
�′

2 − 4

s2
�2 = − ξ−

2ξ+

(
�′′

0 − 1

s
�′

0

)
� ξ−�2

4ξ 2+Q3DH 2
eff

s2 ≡ As2, (B27)

where for the approximation we have expanded the solution for �′
0

to first order in s2/2H 2
eff . The approximate solution for �2 is then

�2 � A
12

s4. (B28)

For small s equation (B24), with the above solution for �2, is
approximately

η̃′′
2 + 1

s
η̃′

2 − 4

s2
η̃2 = Bs4, (B29)

where

B ≡ A�χ (λ + 2)�v/6c2
s . (B30)

The solution is

η̃2 = Bs6

32
. (B31)

The corresponding solution for U2 and V2 can be obtained from
equations (B23) and (B21), respectively. We find

U2 = − A�v

192c2
s

(6 + λ)s5, (B32)
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and

V2 − U2 = A�v

48c2
s

(2 + λ)s5. (B33)

B3 Vorticity perturbation

The perturbation to the vertical component of vorticity, δω, is de-
fined in Cartesian coordinates as

δω ≡ ∂

∂x
δvy − ∂

∂y
δvx. (B34)

Expanding δω similarly to equation (B6) and writing in terms of
the perturbed elliptico-polar velocity components Un, Vn we have

ωn = χξ+
2

V ′
n + χξ+

2s
(Vn + nUn)

+ χξ−
4

(
d

ds
− n − 1

s

)
(Un−2 + Vn−2)

− χξ−
4

(
d

ds
+ n + 1

s

)
(Un+2 − Vn+2) . (B35)

Then

ω0 = χξ−
4

(
d

ds
+ 1

s

)
(V2 − U2) . (B36)

Inserting the above solution for small s, equation (B33), we find

ω0 = ξ 2
−χ

128ξ 2+Q3DF 2
(4�v − �χξ+)

(
s

Heff

)4

. (B37)

Because of the second term in brackets, the sign of the vorticity
perturbation depends on χ . For χ � 2.56 the vorticity is made more
negative by self-gravity and vice versa.

APP ENDIX C : VORTEX EVOLUTION IN 2 D
DISCS

We also simulated vortex evolution in 2D, razor-thin self-gravitating
discs. These simulations were carried out in global cylindrical ge-
ometry (R, φ) using the GENESIS code in a set-up similar to Pierens
& Lin (in preparation). However, we adopt the same self-gravity
parameter and vortex initialization as in our 3D simulations.

Fig. C1 compares the vortex evolution in discs with Q3D = 3, 4,
5 and 100. Being 2D, the elliptic instability is suppressed and thus
plays no role in these simulations. The Q3D = 100 vortex decays
due to numerical diffusion. This also occurs for the Q3D = 4, 5,
unlike in the corresponding 3D fiducial simulations where we find
secular growth. The Q3D = 3 case does show vortex growth, similar
to the corresponding 3D simulation.

In Fig. C2 we plot the time evolution of vortex properties in the
Q3D = 3, 2D disc. Similar to the 3D case, vortex growth is limited to
� H in its half-width. The global set-up here allows us to simulate
beyond this stage without interference from boundary conditions.
We find the vortex induces strong spiral shocks and is weakened,
signified by the drop in |Ro|. The vortex is eventually destroyed
by t = 500P0, i.e. it does not readjust into a new configuration
(Bodo et al. 2007). This self-limited growth is qualitatively similar
to Mamatsashvili & Rice (2009). However, Mamatsashvili & Rice
(2009) considered non-isothermal discs with Q of the order of unity,
which results in a gravito-turbulent state with multiple vortices,
each lasting only two orbits; whereas our isolated vortex persists
for ∼300 orbits.

For the Q3D = 3, 2D disc we also experimented with different
parameters, including the disc aspect ratio and flaring index, surface

Figure C1. Razor-thin, 2D global self-gravitating disc simulations of vortex
evolution. Top: Rossby number; bottom: surface density.
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Figure C2. Vortex evolution in the razor-thin, 2D disc with Q3D = 3 shown
in Fig. C1. Top to bottom: Toomre Q at the vortex centre, Rossby number,
aspect ratio, and radial size.

density profile, and the initial vortex perturbation aspect ratio. The
results are shown in Fig. C3. We find vortex growth is robust, unless
the vortex is initially weak (left-hand panel). This supports the
idea that a sufficiently strong vortex reduces the local gravitational
stability of the disc.

Comparing these 2D simulations to our 3D cases indicates that
for small Q3D (e.g. 3) EI turbulence is not necessary for the vortex
to undergo self-gravitational growth. However, at larger Q3D, self-
gravity in itself is insufficient for vortex growth. Instead, we suggest
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Figure C3. Razor-thin, 2D global self-gravitating disc simulations of vortex
evolution. We fix Q3D = 3 but use different aspect ratios h and flaring indices
f ≡ ∂ln h/∂ln R, surface density profiles σ ≡ −∂ln �/∂ln R, and the
initial vortex aspect ratios χ .

for Q3D � 3, EI turbulence can mediate vortex growth via secular
gravitational instabilities, since for Q3D = 4, 5 we only observe
growth in the 3D simulations with EI, and not in the laminar, 2D
discs.
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