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ABSTRACT
The vertical shear instability (VSI) is a robust phenomenon in irradiated protoplanetary discs (PPDs). While there is extensive
literature on the VSI in the hydrodynamic limit, PPDs are expected to be magnetized and their extremely low ionization fractions
imply that non-ideal magnetohydrodynamic effects should be properly considered. To this end, we present linear analyses of the
VSI in magnetized discs with Ohmic resistivity. We primarily consider toroidal magnetic fields, which are likely to dominate
the field geometry in PPDs. We perform vertically global and radially local analyses to capture characteristic VSI modes with
extended vertical structures. To focus on the effect of magnetism, a locally isothermal equation of state is employed. We find
that magnetism provides a stabilizing effect to dampen the VSI, with surface modes, rather than body modes, being the first
to vanish with increasing magnetization. Subdued VSI modes can be revived by Ohmic resistivity, where sufficient magnetic
diffusion overcomes magnetic stabilization, and hydrodynamic results are recovered. We also briefly consider poloidal magnetic
fields to account for the magnetorotational instability (MRI), which may develop towards surface layers in the outer regions of
PPDs. The MRI grows efficiently at small radial wavenumbers, in contrast to the VSI. When resistivity is considered, the VSI
dominates over the MRI for Ohmic Elsässer numbers �0.09 at plasma beta parameter βZ ∼ 104.
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1 IN T RO D U C T I O N

It has been postulated over decades that the turbulence and angular
momentum transport in most astrophysical accretion discs are medi-
ated by the magnetorotational instability (MRI; Chandrasekhar 1961;
Balbus & Hawley 1991). However, protoplanetary discs (PPDs) are
distinguished by their extremely weakly ionized gas (Gammie 1996;
Armitage 2011), where gas and magnetic fields are poorly coupled,
and the MRI turbulence is either quenched or dampened in the bulk
of the disc (Bai & Stone 2011; Perez-Becker & Chiang 2011; Simon
et al. 2013a,b). Instead, angular momentum transport is dominated by
magnetized disc winds, leaving the bulk disc mostly laminar (Bai &
Stone 2013; Gressel et al. 2015, 2020; Bai et al. 2016; Bai 2017;
Béthune, Lesur & Ferreira 2017).

Nevertheless, some level of turbulence is expected in PPDs to
account for the recent Atacama Large Millimeter/submillimeter
Array (ALMA) observations of molecular line emissions (Teague
et al. 2016; Flaherty et al. 2017, 2018, 2020). Furthermore, tur-
bulence may serve as an essential ingredient in many stages of
planet formation. Turbulence affects the gravitational sedimenta-
tion (Dubrulle, Morfill & Sterzik 1995; Johansen & Klahr 2005;
Youdin & Lithwick 2007), radial diffusion (Clarke & Pringle
1988), and collisional growth (Ormel & Cuzzi 2007; Birnstiel,
Dullemond & Brauer 2010) of dust particles. Long-lived vortices
induced by turbulence (e.g. Raettig, Klahr & Lyra 2015; Manger &
Klahr 2018) can concentrate dust particles (Barge & Sommeria
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1995; Klahr & Henning 1997; Cuzzi, Hogan & Shariff 2008)
and seed planetesimal formation through streaming instability or
gravitational instability (Youdin & Goodman 2005; Johansen et al.
2007; Chiang & Youdin 2010), whereas the growth of streaming
instability can be substantially diminished by a moderate level of
turbulent viscosity (Chen & Lin 2020; Umurhan, Estrada & Cuzzi
2020). Turbulence also influences the radial migration of planets,
as well as the flow morphology and gap formation around them
(Nelson & Papaloizou 2004; Papaloizou, Nelson & Snellgrove
2004). Therefore, understanding the origin and characteristics of
turbulence in PPDs is essential to many aspects of planet formation
and evolution.

The lack of magnetohydrodynamic (MHD) turbulence in a PPD led
to a surge in the interest of purely hydrodynamic instabilities (Lyra &
Umurhan 2019; Weiss, Bai & Fu 2021). Among the most explored
are the vertical shear instability (VSI; Nelson, Gressel & Umurhan
2013, hereafter N13; Lin & Youdin 2015; Latter & Papaloizou 2018,
hereafter LP18; Cui & Bai 2020), the convective overstability in
its linear (Klahr & Hubbard 2014; Lyra 2014; Latter 2016) and non-
linear (subcritical baroclinic instability; Klahr & Bodenheimer 2003;
Petersen, Julien & Stewart 2007a; Petersen, Stewart & Julien 2007b;
Lesur & Papaloizou 2010) phases, and the zombie vortex instability
(Marcus et al. 2013, 2015; Lesur & Latter 2016; Umurhan, Shariff &
Cuzzi 2016b). These instabilities set in under certain thermodynamic
and structural conditions, thereby operating at distinct regions of
PPDs (Malygin et al. 2017; Lyra & Umurhan 2019; Pfeil & Klahr
2019). The VSI is of particular interest as it extends a large portion
of the disc (e.g. Lin & Youdin 2015; Lyra & Umurhan 2019).
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The VSI is inherited from the Goldreich–Schubert–Fricke insta-
bility (Goldreich & Schubert 1967; Fricke 1968) and is initially
discovered in the context of differentially rotating stars. Its impor-
tance to accretion discs was later explored by Urpin & Brandenburg
(1998), Urpin (2003), and Arlt & Urpin (2004). The applicability
of the VSI to PPDs has been demonstrated only recently in N13. It
quickly drew intensive interests (e.g. Stoll & Kley 2014; Barker &
Latter 2015; Umurhan, Nelson & Gressel 2016a; LP18; Lin 2019;
Cui & Bai 2020; Flock et al. 2020; Schäfer, Johansen & Banerjee
2020; Flores-Rivera et. al. 2020) and is considered to be a promising
hydrodynamic mechanism in driving turbulence in PPDs.

A differentially rotating disc with Keplerian profile is stable
according to the Rayleigh criterion (Chandrasekhar 1961). The
presence of vertical shear can destabilize inertial waves in a vertically
global disc model (Barker & Latter 2015). Nevertheless, a fluid
element also experiences stabilizing effects from vertical buoyancy,
which impedes the VSI growth. This can be overcome by sufficiently
rapid cooling that brings the perturbed fluid element to reach local
thermal equilibrium with its surroundings, hence diminishing the
buoyancy. Local linear analyses demonstrate that the unstable modes
are characterized by short radial wavelengths and maximum growth
rates much smaller than the orbital frequency (Urpin 2003; N13).
Two classes of VSI modes have been identified: rapidly growing
surface modes concentrated near the disc surface and more vertically
extended body modes (N13; Barker & Latter 2015; Lin & Youdin
2015). The body modes can be further categorized into breathing and
corrugation modes, depending on the symmetry about the mid-plane
(N13).

The non-linear evolution of the VSI has been examined by
hydrodynamic simulations. In accordance with the linear theory, the
VSI is triggered when thermal relaxation time-scales are less than
0.01–0.1 times the local dynamical time-scales, and the wave modes
exhibit elongated vertical wavelengths (N13). While the surface
modes possess the fastest growth rate, the body (corrugation) modes
eventually take over, dominating the non-linear evolution. Fully
developed VSI turbulence yields a Shakura–Sunyaev (Shakura &
Sunyaev 2009) α value on the order of 10−4–10−3 (N13; Stoll & Kley
2014; Cui & Bai 2020). Non-axisymmetric 3D simulations show
the development of vortices (Richard, Nelson & Umurhan 2016;
Manger & Klahr 2018; Flock et al. 2020; Manger et al. 2020; Pfeil &
Klahr 2020). Incorporating dust particles, numerical simulations
show that VSI can stir up dust grains against vertical settling, but
may also concentrate them through inducing dust-trapping vortices
(Stoll & Kley 2016; Flock et al. 2017; Lin 2019; Schäfer et al. 2020).

Most studies of the VSI to date have neglected magnetic fields
despite their importance in the evolution of PPDs. Two recent works
extend analyses of the VSI to MHD regimes. Local linear stability
analyses in the ideal MHD limit show that weak magnetic fields are
favoured to excite the VSI, specifically when plasma beta β � 400 for
thin discs (LP18), where β is the ratio of gas to magnetic pressure.
They also find the MRI growth rates exceed that for VSI modes,
but the wave vectors of the two are perpendicular to each other. For
resistive discs, LP18 estimate a critical Ohmic Elsässer number of
∼1/h, where h is the disc aspect ratio, for the VSI to operate, by
requiring the magnetic diffusion time-scale to be shorter than the
Alfvén wave propagation time-scales. Non-linear MHD simulations,
applicable to outer regions of the disc, demonstrate that the VSI
can initiate and sustain turbulence in magnetized discs (Cui & Bai
2020). Weak ambipolar diffusion strength, or the enhanced coupling
between gas and magnetic fields, works as stabilizing effects to
dampen the VSI growth.

Previous hydrodynamic models suggest that effective VSI growths
span over ∼5–100 au in PPDs (Lin & Youdin 2015; Pfeil & Klahr
2019). These regions are susceptible to all three non-ideal MHD ef-
fects – Ohmic resistivity, Hall effect, and ambipolar diffusion (Wardle
2007; Bai 2011). However, a quantitative analysis in vertically global,
magnetized discs with non-ideal effects is still lacking. Such analyses
can be useful for understanding the VSI mode properties in real
PPDs and interpreting non-linear simulations. Hence, in this work,
we extend the linear stability analysis of the VSI to weakly ionized
gas in a vertically global disc model. We remark that a vertically
global analysis is necessary for a proper description of elongated
body modes of the VSI, which have been found to dominate in
numerical simulations (N13; Stoll & Kley 2014; Cui & Bai 2020). We
consider ideal MHD and further include Ohmic resistivity as a proxy
for non-ideal effects. We focus primarily on the effect of toroidal
magnetic fields. However, in a local model, we also investigate the
dominance between MRI and VSI by considering purely poloidal
magnetic fields.

The plan of the paper is as follows. In Section 2, we introduce the
basic formulation and establish the equilibrium state of the problem.
In Section 3, we derive and discuss the Solberg–Hoiland stability
criteria for magnetized discs. In Section 4, we present the linearized
equations and detail the analytical and numerical methods used,
with results shown in Section 5, for a purely toroidal background
magnetic field. We also conduct a brief analysis for a purely poloidal
background magnetic field and compare the MRI growth rates with
the VSI in Section 6. Finally, we discuss the results in Section 7 and
summarize our main findings in Section 8.

2 BASI C EQUATI ONS AND EQUI LI BRI A

Consider a gaseous, inviscid, magnetized PPD. The gas density,
velocity, and magnetic field are denoted by ρ, v, B, respectively.
Our formulations are presented in cylindrical (R, φ, Z) coordinates
centred on the protostar, although the spherical radius r is also used
to simplify expressions. The basic dynamical equations written in SI
units are

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv

dt
+ ∇� − 1

μ0
(B · ∇)B + ρ∇� = 0, (2)

where d/dt ≡ ∂/∂t + v · ∇ is the material derivative and μ0 is the
magnetic permeability. The gravitational potential is given by

� = −GM

r
, (3)

where G is gravitational constant, and M is the mass of the central
star. The total pressure

� = P + PB (4)

is the sum of thermal pressure P and magnetic pressure

PB = B2

2μ0
, (5)

where B = |B|. The strength of the magnetic field is parametrized
by the ratio of gas pressure to magnetic pressure,

β = P

PB

. (6)
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2.1 Induction equation

The evolution of magnetic fields is governed by the induction
equation, in which three non-ideal MHD effects manifest,

∂B
∂t

= ∇ ×
[
v × B − J

σB

− J × B
ene

+ ( J × B) × B
γiρρi

]
. (7)

Here, σ B is resistivity, e is electric charge, and ne is electron number
density. The drag coefficient γ i represents the momentum transfer
between ion and neutral collisions, and the ion density is denoted
by ρ i. On the right-hand side, the four terms each corresponds to
the standard inductive term, Ohmic resistivity, the Hall effect, and
ambipolar diffusion. Ohmic resistivity is relevant to electron–neutral
collisions. Ambipolar diffusion corresponds to ion–neutral drift.
The Hall effect is associated with ion–electron drift, and it differs
fundamentally from Ohmic resistivity and ambipolar diffusion as
being a non-dissipative process. The relation between the current
density J and the magnetic field is completed by the Maxwell
equation,

J = 1

μ0
∇ × B. (8)

The displacement current in equation (8) is self-consistently ne-
glected for non-relativistic MHD (Balbus 2009). Finally, the mag-
netic field also satisfies the solenoidal condition,

∇ · B = 0. (9)

To characterize the non-ideal MHD effects, it is convenient to
define the diffusion coefficients

ηO = 1

μ0σB

, ηH = B

μ0ene
, ηA = B2

μ0γiρρi
(10)

for Ohmic resistivity, the Hall effect, and ambipolar diffusion. At a
given ionization fraction, the Ohmic diffusivity ηO is independent of
field strength and density, whereas the Hall diffusivity ηH ∝ B/ρ, and
the ambipolar diffusivity ηA ∝ B2/ρ2. Hence, ambipolar diffusion
dominates in regions of strong fields or low densities, Ohmic
resistivity dominates in regions of weak fields or high densities,
and the Hall effect governs in between (Lesur 2020). We further
introduce dimensionless Elsässer numbers,

� = v2
A

ηO
K
, χ = v2

A

ηH
K
, Am = v2

A

ηA
K
, (11)

where the Alfvén velocity vA is given by

v2
A = |B|2

μ0ρ
. (12)

2.1.1 Toroidal fields in axisymmetric discs

Toroidal magnetic fields have been shown to dominate in global non-
ideal MHD simulations, with the saturation of VSI turbulence (e.g.
Bai 2017; Béthune et al. 2017; Cui & Bai 2020). Furthermore, the
VSI is an axisymmetirc instability (N13). These results motivate us
to primarily consider purely toroidal fields in axisymmetric discs. In
this case, the Hall effect vanishes, and we show here that ambipolar
diffusion behaves the same way as Ohmic resistivity. In the limit of
B = (0, Bφ, 0), we expand the numerator of the last term on the right-
hand side of equation (7), corresponding to ambipolar diffusion,

( J × B) × B = ( J · B)B − B2 J . (13)

This implies that for electric currents being everywhere perpendicular
to magnetic fields, as the case for purely toroidal field geometry,

ambipolar diffusion can be treated as an effective resistivity with field
dependency (Balbus & Terquem 2001). Consequently, the induction
equation reduces to

dBφ

dt
= −(∇ · v)Bφ + BφvR

R
+ η

(
∇2Bφ − Bφ

R2

)
, (14)

where η = ηO + ηA, and we assume a constant η throughout.
The second and final terms on the right-hand side result from the
curvilinear geometry.

2.2 Effective energy equation

The ideal gas law is given by

P = R
μ

ρT , (15)

where R is the gas constant, μ is the mean molecular weight, and
T is the gas temperature. We define the isothermal sound speed cs,
pressure scale height H, and disc aspect ratio h through

c2
s ≡ P

ρ
, H ≡ cs


K
, h ≡ H

R
, (16)

where 
K =
√

GM/R3 is the Keplerian angular velocity. In the
hydrodynamic limit, isothermality is most favourable for the VSI
because the stabilizing effect stabilizing from gas buoyancy is absent
(N13; Lin & Youdin 2015). To focus on the effect of magnetic fields,
we adopt a locally isothermal thermodynamic response, which is
applicable to the outer parts of PPDs wherein the temperature is
regulated by stellar irradiation (Chiang & Goldreich 1997). Thereby,
the energy equation of gas pressure becomes

dP

dt
+ P∇ · v = ρv · ∇c2

s . (17)

Consider the evolution of the magnetic pressure associated with a
purely azimuthal field,

dPB

dt
= Bφ

μ0

dBφ

dt
. (18)

Combining equations (14), (17), and (18), we formulate an effective
energy equation

d�

dt
+ γB�(∇ · v) = ρv · ∇c2

s + B2
φ

μ0R
vR

+Bφ

μ0
η

(
∇2Bφ − Bφ

R2

)
, (19)

where the effective adiabatic index is defined by

γB ≡ β + 2

β + 1
. (20)

Equation (19) resembles the energy equation for a fluid subject to
heating or cooling in the hydrodynamic limit (Lin & Youdin 2015).
It shows that an axisymmetric, locally isothermal, magnetized gas
with a purely azimuthal field behaves like an unmagnetized gas with
adiabatic index γ B,1 while it is also subject to non-adiabatic effects on
the right-hand side: the locally isothermal thermodynamic response,
magnetic diffusion, and curvature effects. Note that γ B(β) here is
not necessarily constant because β(R, Z, t) can be non-uniform and

1We remark that this analogy can be generalized to locally polytropic discs
where P = Kρ� , where K is a prescribed function of position and � is the
polytropic index. In this case the effective adiabatic index becomes γ B = (�β

+ 2)/(β + 1).
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can evolve in time. For β → ∞, we recover a locally isothermal
gas with unit adiabatic index γ B → 1. On the other hand, a strongly
magnetized disc with β → 0 is equivalent to a fluid with an effective
adiabatic index γ B → 2.

2.3 Equilibrium state

We consider axisymmetric steady states with a purely azimuthal ve-
locity and magnetic field. The mid-plane gas density and temperature
are prescribed as

ρ0(R) = ρ0(R0)

(
R

R0

)−qD

, (21)

T (R) = T (R0)

(
R

R0

)−qT

, (22)

where R0 is a reference radius, and qT and qD are constant power-law
indices. The equilibrium solutions satisfy the equation of motion,

∂�

∂R
+ 1

ρ

∂�

∂R
+ 2PB

ρR
= R
2, (23)

∂�

∂Z
+ 1

ρ

∂�

∂Z
= 0, (24)

where 
 ≡ vφ /R is the angular frequency. These equations may
be solved explicitly for a given magnetic field configuration. We
consider two special cases in the following, depending on whether
resistivity is included.

2.3.1 Constant-β discs

We consider constant-β discs for ideal MHD (η = 0). The effective
energy equation (19) is then satisfied identically so the solutions
below represent exact equilibria. In this case, the vertical gradient of
equilibrium angular velocity is

∂
2

∂Z
= − qT

R2

GMZ

r3
. (25)

The density and rotation profiles are

ρ(R,Z) = ρ0(R) exp

[
h−2

(
R

r
− 1

)
β

1 + β

]
, (26)


2(R,Z) = 
2
K

[
(1 − qT) − 1 + β

β

(
qT + qD + 2

1 + β

)
h2 + qTR

r

]
. (27)

As β → ∞, we recover the hydrodynamic limit (N13). The thin disc
approximation (h 	 1) leads to 
 ≈ 
K. As β → 0, the density
gradient profile shows that a strongly magnetized disc becomes
vertically unstratified. A small β ≤ 1 leads to strong deviations
from the Keplerian rotation, but a minimum value of β is required to
ensure 
2 > 0 at the disc mid-plane,

β >
(qT + qD − 2) h2

1 − (qT + qD) h2
. (28)

For typical PPD parameters, h ∼ 0.05 and qD, qT are of order unity, so
the above requirement becomes β � O(10−3). This is easily satisfied
for the weakly magnetized discs with β � 1 that we consider.

2.3.2 Constant-Bφ discs

We consider constant-Bφ discs for ideal MHD and resistive discs
(η �= 0). Resistive discs present approximate equilibrium solutions
because there is a slow diffusion of the magnetic field due to the
global curvature term in equation (19). However, this is not expected

to significantly affect radially localized dynamics such as the VSI.
In this case, β is no longer a constant but declines with height,

β(R,Z) = β0(R)
ρ(R,Z)

ρ0(R)
, (29)

where β0 = β(R, 0). The disc becomes more strongly magnetized
with increasing height.

For constant-Bφ discs, magnetic pressure does not contribute to
the vertical equilibrium, and we recover the hydrodynamic limit for
density profile,

ρ(R,Z) = ρ0(R) exp
[
h−2(R/r − 1)

]
. (30)

The vertical shear gradient differs from constant-β discs because the
curvature term in equation (23) now depends on Z through ρ. We
find

∂
2

∂Z
=

(
2

β
− qT

)
1

R2

GMZ

r3
, (31)

and the rotation profile is


2(R,Z) = 
2
K

[
(1 − qT) −

(
qT + qD + 2

β

)
h2 + qTR

r

]
. (32)

Accordingly, even a strictly isothermal disc (qT = 0) can exhibit
vertical shear due to the curvature term. Thus, we may expect a
corresponding VSI growth, but this should be examined further in
radially global models. For PPDs where magnetic fields are weak,
the angular velocity profiles in equations (27) and (32) converge to
the hydrodynamic limit.

3 SO L B E R G – H O I L A N D C R I T E R I A

The Solberg–Hoiland criteria describe the linear hydrodynamic sta-
bility of ideal fluids against axisymmetric and adiabatic perturbations
(Tassoul 1978). Now, our axisymmetric, magnetized discs with
purely azimuthal fields obey a similar energy equation (19) as in
hydrodynamics. If, in addition, curvature terms and magnetic tension
forces can be neglected, then our disc models satisfy the same
form of equations as in adiabatic hydrodynamics. This motivates
us to formulate an equivalent Solberg–Hoiland stability criterion for
magnetized discs as follows.

The standard hydrodynamic Solberg–Hoiland criteria are ex-
pressed in terms of the gradient of pressure P, entropy S ∝ ln (P1/γ /ρ),
and angular frequency 
, where γ is the adiabatic index. By setting
P → � and γ → γ B, we find that the stability is ensured in a
magnetized disc if

κ2 − 1

ρ
∇� · ∇SB > 0, (33)

− 1

ρ

∂�

∂Z

(
κ2 ∂SB

∂Z
− R

∂
2

∂Z

∂SB

∂R

)
> 0, (34)

where

κ2 ≡ 1

R3

∂
(
R4
2

)
∂R

is the square of epicyclic frequency, and

∇SB ≡ 1

γB

∇ ln � − ∇ ln ρ (35)

defines the gradient of effective entropy SB of a locally isothermal
fluid with an azimuthal field. Correspondingly, we define

N2
R = − 1

ρ

∂�

∂R

∂SB

∂R
, N2

Z = − 1

ρ

∂�

∂Z

∂SB

∂Z
(36)
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as the square of buoyancy frequencies in the radial and vertical
directions, respectively.

To examine whether magnetized disc models are stable subject
to the modified Solberg–Hoiland criteria, we first derive the vertical
buoyancy frequency for constant-β and constant-Bφ thin discs,

N2
Z = β

(β + 2)(β + 1)

Z2

H 2

2

K (constant-β), (37)

N2
Z = 2

β(R, Z) + 2

Z2

H 2

2

K (constant-Bφ). (38)

As β → ∞, N2
Z ∝ 1/β → 0 for both models, and we recover

a locally isothermal hydrodynamic disc with vanishing vertical
buoyancy. As β → 0, for constant-β discs, N2

Z ∝ β and the buoyancy
effect vanishes since there is no vertical density stratification in
this limit. In a constant-Bφ disc, β → 0 occurs for large |Z| as
in equation (29), so that N2

Z → 
2
KZ2/H 2, and the disc expected to

be strongly stabilized by magnetic buoyancy.
We now examine whether the first Solberg–Hoiland criterion is

satisfied. Equation (33) can be cast into

κ2 + N2
R + N2

Z > 0. (39)

A stable stratification, N2
R,Z > 0, requires the effective entropy to

increase with R or Z because total pressure gradients are usually
negative. In thin weakly magnetized discs, |NR| ∼ O(
Kh) 	 κ and
N2

Z > 0 (equations 37 and 38), thus the first criterion is generally
satisfied.

Next, we examine the second Solberg–Hoiland criterion. Recall
that the Solberg–Hoiland criteria apply to adiabatic flows. Thus,
equations (33) and (34) should only be applied if the governing
equations of the magnetized disc (equations 1–2, and 19) can map
exactly to adiabatic hydrodynamics. That is, the right-hand side of
equation (19) and the magnetic tension force in equation (2) should
be negligible. This requires

(i) a strictly isothermal disc (constant cs in R, Z);
(ii) ideal MHD (η = 0);
(iii) weak magnetic fields (β 
 1) so that curvature terms

associated with magnetic fields can be neglected (Pessah & Psaltis
2005).

The first restriction implies ∂
/∂Z = 0. The second criterion then
becomes

κ2N2
Z > 0, (40)

which is satisfied in both of our disc models. To study stability with
vertical shear, which requires a radially varying disc temperature
and non-ideal MHD effects, we must solve the linearized equations
explicitly as conducted in the following section.

4 LIN EAR PRO BLEM

4.1 Perturbation equations

We consider axisymmetric Eulerian perturbations for v′, ρ ′, and �
′

of the form

ρ ′ ∝ exp(σ t + ikRR). (41)

The complex frequency is denoted by σ = s + iω, and a real radial
wavenumber kR is taken. We assume radially localized disturbances,
kRR 
 1. The background disc variables are evaluated at the reference
radius R0, but their vertical dependence is retained. Curvature terms
resulting from the cylindrical geometry are neglected, which restricts

the analyses to weak magnetic fields (Pessah & Psaltis 2005). By
assuming B′ = (0, B ′

φ, 0), the linearized perturbation equations read

σv′
R − 2
v′

φ − ρ ′

ρ2

∂�

∂R
+ ikR

�
′

ρ
= 0, (42)

σv′
φ + κ2

2

v′

R + ∂vφ

∂Z
v′

Z = 0, (43)

σv′
Z − ρ ′

ρ2

∂�

∂Z
+ 1

ρ

∂�′

∂Z
= 0, (44)

σρ ′ +
(

ikRρ + ∂ρ

∂R

)
v′

R + ρZ
∂ρ

∂Z
v′

Z + ρ
∂v′

Z

∂Z
= 0, (45)

σ�′ +
(

ikR�γB + ∂�

∂R
− ρ

∂c2
s

∂R

)
v′

R + ∂�

∂Z
v′

Z

+ γB�
∂v′

Z

∂Z
+ Bφ

μ0
η∇2B ′

φ = 0. (46)

Note that the magnetic tension force vanishes for a purely toroidal
field and neglecting curvature terms. The perturbed azimuthal mag-
netic field B ′

φ can be expressed as

B ′
φ = μ0

Bφ

(�′ − ρ ′c2
s ). (47)

When β → ∞ and hence �
′ → P

′
, the set of linearized equations

recovers the hydrodynamic limit (Lin & Youdin 2015). For finite
magnetic field strengths and η = 0, these equations describe the
ideal MHD limit. For η > 0, the set of equations describes non-ideal
MHD.

4.2 Analytical solutions

Analytic solutions can be obtained in the limit of ideal MHD (η = 0)
with a large and constant β, by solving the linearized equations with
polynomial solutions. To do so, we make the following simplifying
assumptions (Lin & Youdin 2015).

(i) A fully radially local approximation (∂/∂R = 0) for background
discs. However, the vertical shear that originates from the radial
temperature profile (∂T/∂R) is retained.

(ii) We set 
 = 
K and κ = 
K where they appear explicitly and
without vertical derivatives. As seen in equation (27), the Keplerian
approximation is only valid for large β. A strong magnetic field will
lead to substantial deviation from 
K.

(iii) In the hydrodynamic limit, the VSI is an overstability due
to the destabilization of inertial waves (Barker & Latter 2015).
We expect a similar result for weak magnetizations and consider
low frequency modes with |σ | 	 
K to filter out acoustic waves
(Lubow & Pringle 1993).

(iv) We consider thin discs and set

1

ρ

∂�

∂Z
= −
2

KZ,

∂ ln ρ

∂Z
= − β

1 + β

Z

H 2
,

R
∂
2

∂Z
= −qT

Z

R

2

K. (48)

To non-dimensionalize the perturbation equations, we choose the
appropriate scalings for time-scales, length-scales, and velocities to
be the Keplerian orbital time 
−1

K , background sound speed cs, and
pressure scale-height H. We thus write

σ → 
Kσ ∗, Z → HZ∗, kR → K/H, (49)
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2988 C. Cui and M.-K. Lin

where scaled variables are denoted by an asterisk and are omitted
below. Equations (42) - (46) can be combined into a single second-
order ordinary differential equation,

d2v′
Z

dZ2
− a1

dv′
Z

dZ
Z + v′

Z(a2 − a3Z
2) = 0, (50)

where a1, a2, and a3 are constants in Z and are defined by

a1 = β

1 + β
− iKqTh,

a2 = − β

2 + β
− σ 2K2 + iKqTh,

a3 = β

2 + β
(γB − 1)

(
K2 + iKqTh

)
. (51)

Equation (50) is equivalent to the hydrodynamic result derived by
Lin & Youdin (2015, see their equation 29) without cooling and
assuming K 
 1. This can be seen by setting Z ≡ Z̃

√
(1 + β)/β,

K ≡ K̃
√

β/(1 + β), and h ≡ h̃
√

β/(1 + β). However, they also
show that in the hydrodynamic limit, neglecting the radial structure
of disc while retaining vertical shear is only valid for gas that is
nearly isothermal in its thermodynamic response. We thus expect
equation (50) to only apply for weak magnetizations where γ B

→ 1. In the limit β → ∞ and hence a3 → 0, we recover the
equation for the VSI in locally isothermal discs (Barker & Latter
2015; Lin & Youdin 2015). When there is no vertical shear (qT =
0), equation (50) is analogous to that obtained by Lubow & Pringle
(1993) for axisymmetric waves in adiabatic discs.

We bring equation (50) into a form that can be solved analytically
(Lubow & Pringle 1993). Define a variable Y(Z),

Y (Z) = v′
Z(Z) exp

(−Z2ξ/2
)
, (52)

where ξ is a constant to be determined. Plugging this into equa-
tion (50) yields an ordinary differential equation in Y,

d2Y

dZ2
− (a1 − 2ξ )Z

dY

dZ
+ Y [(a2 + ξ ) + (ξ 2 − a1ξ − a3)Z2] = 0.

(53)

Then choose ξ to eliminate the Z2 term,

ξ = 1

2
a1 ± 1

2

√
a2

1 + 4a3, (54)

which brings equation (53) into

d2Y

dZ2
− (a1 − 2ξ )Z

dY

dZ
+ Y (a2 + ξ ) = 0. (55)

We proceed to represent solutions of Y by Yn(Z), an nth order
polynomial in Z,

Yn(Z) =
n∑

m=0

BmZm, (56)

where Bm are constant coefficients. Substituting this into equa-
tion (55), we arrive at the recurrence relation between Bm and Bm + 2,

Bm+2 = (a1 − 2ξn)m − (a2 + ξn)

(m + 1)(m + 2)
Bm, (57)

where we have relabelled ξ → ξ n. For physical solutions to
equation (55), we demand the vertical kinetic energy density of
perturbations to remain bound, i.e. ρ|v′

Z|2 approaches zero for large
|Z|. Then Yn(Z) should be a polynomial, as assumed. Thus Bn + 2 =
0 when m = n, or

(a1 − 2ξn)n = a2 + ξn. (58)

Figure 1. Comparison of growth rates s and oscillation frequencies ω of
N13 and this work (βφ → ∞). Line denotes analytical solutions obtained in
Section 4.2. Diamonds denote numerical solutions obtained in N13. Crosses
denote numerical solutions obtained in Section 4.3. Labels B, C, and S
represent breathing, corrugation, and surface modes, respectively. Numbers
represent fundamental and first overtone modes. Modes reside in the lower
right are high-order body modes.

This relation can be also quickly obtained by recognizing equa-
tion (55) as the Hermite differential equation (Barker & Latter 2015).
We choose the negative root in equation (54) for physical solutions,
giving

ξn = 1

2
a1 − 1

2

√
a2

1 + 4a3. (59)

For a given set of disc parameters (q, β, h), equations (51), (58),
and (59) can be readily solved to obtain the dispersion relation
for the complex frequency σ n = σ n(K; n) of the nth mode. The
corresponding eigenfunction v′

Z is then given by equations (52),
(56), and (57). We note that the vertical shear rate increases without
bound with height in thin discs (equation 48), leading to unbound
growth rates (as seen in Fig. 1 discussed below), which violates the
low frequency approximation.

4.3 Numerical solutions

We also solve the full linearized equations (42)–(46) numerically.
The equations can be written in a form of standard matrix eigenvalue
problem,

L · X + σ · X = 0, (60)

where σ is the eigenvalue, L is a 5 × 5 matrix of linear operators,
and X = [v′

R, v′
φ, v′

Z, ρ ′, �′]T is a vector of eigenfunctions. We use
DEDALUS2 (Burns et al. 2020), a general purpose spectral code for
differential equations, to solve the linear eigenvalue problem. We
employ a Chebyshev collocation grid of N = 150 points. Spurious
solutions are filtered out and numerical convergence is verified

2https://dedalus-project.org/
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VSI in magneitzed PPDs 2989

Figure 2. Growth rates s and oscillation frequencies ω of unstable modes at discrete plasma βφ or βφ0. Left: a constant-β disc. Right: a constant-Bφ disc.
Curves denote analytic solutions (Section 4.2) and crosses denote numerical solutions (Section 4.3).

against double-resolution calculations with N = 300 by using the
EIGENTOOLS package.3

Unlike the analytic model in Section 4.2, where the disc surface
extends to infinity due to the vertically isothermal background state,
for numerical solutions we consider a finite vertical domain with Z
∈ [ −5, 5]H. The boundary conditions imposed at the disc surfaces
are

v′
Z = 0,

∂�′

∂Z
= 0. (61)

The former condition is adopted in the limit of ideal MHD, and
the latter being additional conditions when resistivity is included.
We have experimented with boundary conditions and found that our
main findings are insensitive to them.

5 R ESULTS

In this section, we present example solutions in the hydrodynamic
limit (Section 5.1), the ideal MHD limit (Section 5.2), and the non-
ideal MHD limit (Section 5.3). The fiducial parameter values are h =
0.05, qT = 1, qD = 1.5, and K = 35. Note that qT = 1 gives a constant
disc aspect ratio h. We present the non-dimensionlized perturbed
quantities as in equation (49). Plasma beta parameters associated
with azimuthal and vertical fields are denoted by βφ = 2μ0P/B2

φ

and βZ = 2μ0P/B2
Z . We denote mid-plane plasma beta parameters

by βφ0 and βZ0, and mid-plane Elsässer number �0. For reference,
values of βZ ∼ 104 and βφ ∼ 102 are found to account for the accretion
rate in PPDs (Simon et al. 2013a; Bai 2015). Note, however, as in the
discussion above in this section we only consider azimuthal fields,
so that β = βφ . Poloidal fields will be explored in Section 6.

We follow N13 to denote breathing, corrugation, and surface
modes as B, C, and S, respectively, with numbers 1 and 2 representing
the fundamental and first overtone modes. For clarity, analytic
solutions that have discrete modes are plotted as continuous curves.

3https://github.com/DedalusProject/eigentools

5.1 The hydrodynamic limit

We first compare our numerical and analytical solutions with N13,
who considered purely hydrodynamic discs. To this end, we com-
pute the numerical solutions to equations (42)–(46) and analytical
solutions given via equation (58) in the hydrodynamic limit (βφ →
∞), and compare with numerical solutions to equation (39) in N13.
Note that N13 employed the anelastic approximation (∂ρ/∂t = 0),
while we account for full compressibility in numerical solutions. The
results are shown in Fig. 1.

For the fundamental and first overtone breathing and corrugation
modes (B1, B2, C1, and C2), all three methods yield consistent
results. For surface modes and higher order body modes in the lower
right of Fig. 1, the two numerical solutions also show consistency,
especially at low oscillation frequencies. The analytic solutions for
these higher order body modes do not match with numerical solutions
due to the lack of a disc surface in the former (Barker & Latter 2015).
In practice, the growth rate is limited by the maximum vertical shear
rate within the domain (Lin & Youdin 2015), as reflected in the
numerical solutions. Overall, the comparison is satisfactory.

5.2 The ideal MHD limit

In the ideal MHD limit, we examine the behaviour of the VSI
modes as functions of disc magnetizations βφ (Section 5.2.1),
radial wavenumbers K (Section 5.2.2), and disc aspect ratios h
(Section 5.2.3).

5.2.1 Disc magnetization

We now examine the strengths of toroidal magnetic fields on the
VSI. In Fig. 2, we show example growth rates and frequencies for
constant-β discs in the left-hand panel and constant-Bφ discs in the
right-hand panel. Similarly, Fig. 3 shows how growth rates of various
modes vary with plasma beta. The curves without labels are high-
order body modes.

We highlight three major findings. First, strong magnetization
reduces the VSI growth. Physically, this is because the gas and the
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2990 C. Cui and M.-K. Lin

Figure 3. Growth rates s of all unstable modes as a function of plasma βφ or βφ0. Left: a constant-β disc. Right: a constant-Bφ disc.

Figure 4. Fundamental corrugation modes C1 (left) and fundamental breathing modes B1 (right) at βφ = 105 (top) and βφ = 102 (bottom) in constant-β discs.
Contours show the magnetic field perturbations, Re{B ′

φ exp[iK(R − R0)]}/Bφ , normalized by its maximum. Arrows denote perturbed velocity vectors (v′
R, v′

Z).
The radial interval of K(R − R0) = 2π corresponds to 0.18H.

magnetic fields are perfectly coupled in the limit of ideal MHD,
so that magnetic fields impede the free movement of the perturbed
gas. Furthermore, surface modes are the first to vanish with strong
magnetization. This can be understood by the fact that the stabilizing
vertical buoyancy scales as Z2 for both models as seen in equations
(37) and (38), hence the gas is subject to stronger stabilization at
the disc surface. Finally, the critical βφ to recover hydrodynamic
results for a constant-β disc, βφ � 105, is smaller than that for the
mid-plane value in a constant-Bφ disc, βφ0 � 109. This is because
in a constant-Bφ disc, equation (29) shows that βφ decreases with
height, so the vertically averaged β is smaller than its mid-plane
value.

Fig. 4 shows the flow structure in a constant-β disc. The radial
domain of K(R − R0) = 2π corresponds to an interval of 0.18H. The
left-hand panels show the fundamental corrugation modes in discs
with βφ = 105 (top) and βφ = 102 (bottom). The perturbed vertical
velocities show even symmetry about the mid-plane. The right-
hand panels are corresponding fundamental breathing modes, where
the perturbed vertical velocities have odd symmetry. The contours
show the magnetic field perturbations Re{B ′

φ exp[iK(R − R0)]}/Bφ

and is normalized by its maximum value. The perturbed magnetic
fields possess opposite symmetry to perturbed vertical velocities.
Importantly, we find that strong magnetization confines VSI activity
towards the mid-plane since the stabilizing vertical buoyancy in-
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VSI in magneitzed PPDs 2991

Figure 5. Contours of maximum growth rates in logarithmic scale as functions of βφ and radial wavenumber K (left) or disc aspect ratio h (right) in a constant-β
disc. Dashed line represents βφ = h−2.

creases with height. The same arguments also apply to a constant-Bφ

disc.

5.2.2 Radial wavenumber

The left-hand panel of Fig. 5 depicts contours of maximum growth
rates as a function of βφ and radial wavenumber K for constant-β
discs. A critical βc ∼ 103 can be defined to separate the discs into
two regimes. In constant-Bφ discs it is βc ∼ 105. For βφ � βc,
the maximum growth rate is a monotonically increasing function of
K, whereas for βφ � βc, the maximum growth rate peaks at some
intermediate K. We explain below that βc is in fact the critical disc
magnetization below which surface modes are quenched. In Fig. 3,
we see that at βφ � βc, surface modes, which prefer very small
radial wavelengths, dominate the maximum growth rates resulting
in fast growth rates at large K. At βφ � βc, surface modes are
suppressed, while body modes that prefer longer radial wavelengths
persist, and thus maximum growth rates appear at intermediate radial
wavenumbers.

5.2.3 Disc aspect ratio

In the right-hand panel of Fig. 5, we show contours of maximum
growth rates as functions of βφ and disc aspect ratio h, again for
constant-β discs. The maximum growth rates increase with the
disc aspect ratio for a given βφ . Requiring modes to fit into the
vertical height of the disc, a lower limit can be placed on βφ for
the VSI to operate, βmin � (−R∂ ln 
/∂Z)−2 (LP18). This is set
by the vertical shear rate, and can be simplified to βmin � h−2

using equation (48). Note, however, this criterion was derived for
purely poloidal background fields in a local approximation, while
we consider purely toroidal magnetic fields in a vertically global
disc. Nevertheless, we find the local condition βφ = h−2, shown in
Fig. 5 as the dashed line, successfully predicts the quenching of the
VSI in our disc model.

5.3 The non-ideal MHD limit

In this section, we show that the VSI can be revived when non-ideal
MHD effects are included. To assure the existence of equilibrium
solutions, a constant-Bφ disc model is employed (Section 2.3.2).
With purely toroidal magnetic fields in axisymmetric discs, the three
non-ideal MHD effects reduce to only Ohmic resistivity, because
the Hall effect vanishes, and ambipolar diffusion acts as an effective
resistivity with field dependency (Section 2.1.1). Therefore, we only
explore the dependency of Ohmic Elsässer number �, while we
expect the same results apply to ambipolar diffusion. We take the
diffusivity η to be constant so that the Elsässer number increases
with |Z|, as shown in equation (11).

In the left-hand panel of Fig. 6, we show the growth rates of all
unstable modes as a function �0 at βφ0 = 102. The labels correspond
to surface and body modes in the hydrodynamic limit (Fig. 1), which
is recovered for small �0 or strong Ohmic resistivity. On the other
hand, �0 → ∞ tends to the ideal MHD limit. We find for �0 � 103,
the surface modes vanish and the growth rate of body modes is
significantly reduced due to strong magnetization. As �0 declines
from larger values, the growth rates of these body modes drop at
around �0 ∼ 103, then they re-emerge and converge to hydrodynamic
results. The growth rates of all modes converge to hydrodynamic
results for �0 � 10, with the transition starting at �0 ∼ 102. Local
analyses demonstrate that the stabilizing effect by magnetic fields
will be overcome by magnetic diffusion when � � h−1 (=20 in
our fiducial disc) for a mode with growth rate ∼h
 (LP18).4 This
is in agreement with our results, though the growth rates from our
solutions are only reduced rather than completely suppressed.

The right-hand panel of Fig. 6 shows the maximum growth rates
as functions of βφ0 and �0. For βφ0 > 103, the maximum growth rate
is a monotonically decreasing function with increasing �0, whereas
for βφ0 < 103, the maximum growth rate has its minimum resides
at some intermediate �0, corresponding to the left-hand panel of

4Equation (64) of LP18 contains a typographical error, the corrected expres-
sion is Eη � 1/q (Latter, private communication).

MNRAS 505, 2983–2998 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2983/6286927 by Academ
ia Sinica user on 25 June 2021



2992 C. Cui and M.-K. Lin

Figure 6. The effect of Ohmic resistivity on the VSI growth rate. Left: growth rate s versus Ohmic Elsässer number �0 at βφ0 = 102. Right: contour of
maximum growth rates in logarithmic scales as functions of plasma βφ0 and Ohmic Elsässer number �0.

Fig. 6. The hydrodynamic result is recovered for sufficiently weak
fields (βφ0 � 105) or sufficiently strong resistivity (λ0 � 10).

6 PU R E LY P O L O I DA L BAC K G RO U N D
MAGN ETIC F IELDS

The above analyses focus on discs threaded by a toroidal magnetic
field, which is expected to dominate over poloidal field strengths
in PPDs (e.g. Bai 2017; Béthune et al. 2017; Cui & Bai 2020).
However, the presence of a poloidal field, even weak, can lead to
new effects such as MHD disc winds and the MRI (Bai 2013; Simon
et al. 2013b; Gressel et al. 2020). Specifically, the surface layers
in outer regions of PPDs are likely sufficiently ionized by stellar
far-ultraviolet (FUV) radiation to trigger the MRI (Perez-Becker &
Chiang 2011; Simon et al. 2013a,b; Bai 2015). These regions are also
prone to the VSI since the vertical shear rate increases with height.
In this section, we investigate the VSI modes in a disc with purely
poloidal magnetic fields, B = (BR, 0, BZ). In Section 6.1, we study
the effects of poloidal magnetic fields on the VSI in a vertically
global disc model. In Section 6.2, we compare the MRI with the
VSI in a local disc model. Although toroidal fields are absent in the
background, it is allowed in the perturbed state.

6.1 Vertically global model

We make several simplifying assumptions to establish disc equilibria
with a purely poloidal magnetic field.

(i) The Lorentz force in the momentum equation is ignored
because the disc is weakly magnetized. We therefore use equilibrium
solutions for 
 and ρ in the hydrodynamic limit (equations 26 and
27 with β → ∞, see also N13).

(ii) We assume thin discs and consider h 	 1.
(iii) A constant background vertical magnetic field BZ is assumed,

and we seek the required equilibrium radial magnetic field BR, as
follows.

The equilibrium magnetic fields must satisfy solenoidal condition
and induction equation. Considering only Ohmic resistivity with a
constant diffusivity, the equilibrium induction equation is

0 = (B · ∇)vφ − (vφ · ∇)B + η∇2 B, (62)

where vφ = R
φ̂. In the thin disc approximation, the gradients of
vφ are

∂vφ

∂Z
� −1

2

KqT

Z

R
, (63)

∂vφ

∂R
� −1

2

K. (64)

The induction equation can be satisfied by the radial field,

BR = −1

3
qT

Z

R
BZ. (65)

Notice that this field configuration is not subject to Ohmic diffusion
and satisfies the solenoidal condition,

1

R

∂(RBR)

∂R
+ ∂BZ

∂Z
= 0. (66)

Therefore, an approximate equilibrium magnetic field configuration
is obtained. The equilibrium solution, equation (65), resembles
equation (50) in LP18. Since |BR| ∼ O(h)|BZ|, the strength of the
magnetic field is dominated by the vertical field, which is assumed a
constant so that this is similar to the constant-Bφ discs considered in
Section 2.3.

With a poloidal field it is not possible to map the problem
to adiabatic hydrodynamics. We therefore work with the MHD
equations directly. The radial derivatives of background quantities
are omitted. The set of linearized equations is

σ
ρ ′

ρ
+ ikRv′

R + dv′
Z

dZ
+ d ln ρ

dZ
v′

Z = 0, (67)

σv′
R − 2
v′

φ + ikR

P ′

ρ
+ ikR

μ0ρ
B · B′

− 1

μ0ρ

[
ikRBRB ′

R + BZ

dB ′
R

dZ
+ dBR

dZ
B ′

Z

]
= 0, (68)
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Figure 7. Left: growth rates s of all unstable modes as a function of mid-plane βZ0 in the ideal MHD limit. Middle: growth rates s versus mid-plane Ohmic
Elsässer number �0 at βZ0 = 104. Right: contour of maximum growth rates as functions of βZ0 and Ohmic Elsässer number �0.

σv′
φ + κ2

2

v′

R + dvφ

dZ
v′

Z

− 1

μ0ρ

[
ikRBRB ′

φ + BZ

dB ′
φ

dZ

]
= 0, (69)

σv′
Z + 1

ρ

dP ′

dZ
− ρ ′

ρ2

dP

dZ
+ 1

μ0ρ

∂B · B
∂Z

′

− 1

μ0ρ

[
ikRBRB ′

Z + BZ

dB ′
Z

dZ

]
= 0, (70)

σB ′
R −

[
ikRBR + BZ

d

dZ

]
v′

R

+
[

ikRv′
R + dv′

Z

dZ
+ v′

Z

∂

∂Z

]
BR +

[
k2

R − d2

dZ2

]
ηB ′

R = 0, (71)

σB ′
φ −

[
ikRBR + BZ

d

dZ

]
v′

φ

−
[

κ2

2

− 2


]
B ′

R − ∂vφ

∂Z
B ′

Z +
[
k2

R − d2

dZ2

]
ηB ′

φ = 0, (72)

σB ′
Z −

[
ikRBR + BZ

d

dZ

]
v′

Z

+
[

ikRv′
R + dv′

Z

dZ

]
BZ +

[
k2

R − d2

dZ2

]
ηB ′

Z = 0, (73)

P ′ = ρ ′c2
s . (74)

Note that there is now a magnetic tension force in the momentum
equations.

We solve the linear eigenvalue problem, in its dimensionless form,
numerically using the spectral method described in Section 4.3. A
resolution of N = 100 is used. Spurious solutions are filtered out
with double resolution calculations. Boundary conditions imposed
at upper and lower disc surfaces for ideal MHD limit are (Gammie &
Balbus 1994; Sano & Miyama 1999)

ρ ′ = 0, B ′
R = 0, B ′

φ = 0. (75)

Additional conditions are imposed with Ohmic resistivity,

P
′ = 0, B ′

Z = 0. (76)

The quantities σ , Z, and K reported below are non-dimensionlized
as in equation (49). With the inclusion of vertical magnetic fields,

MRI modes emerge in the numerical solutions. Unlike the VSI,
however, MRI modes are not overstable even with resistivity, i.e.
Im(σ ) ≡ ω = 0 (Sano & Miyama 1999), while it can be seen in
Fig. 2 that VSI modes generally have 0.01 < ω < 1, hence the MRI
modes do not contaminate the numerical results of the VSI.

The left-hand panel of Fig. 7 shows growth rates of all unstable
modes as a function of disc magnetization βZ0 in the ideal MHD limit.
Consistent with purely the toroidal field model, strong magnetization
suppresses VSI growth and surface modes are the first to vanish with
increasing field strengths. The critical βZ0 to recover hydrodynamic
results is even larger, βZ0 � 1010, because the total magnetic field
strength increases over height as radial magnetic field develops away
from the mid-plane in equation (65).

Growth rates including Ohmic resistivity are shown in the middle
and right-hand panels of Fig. 7. The middle panel shows the growth
rates of all unstable modes as a function of Ohmic Elsässer number
�0 at βZ0 = 104. Nearly all the VSI modes are suppressed when
Ohmic resistivity is weak at �0 � 10. The VSI modes start to grow
when �0 � 10. Fundamental body modes B1 and C1 converge to the
hydrodynamic growth rates at �0 ∼ 1. On the other hand, surface
modes and high-order body modes show slower transitions to their
hydrodynamic growth rates, requiring �0 ∼ 0.1. The right-hand
panel of Fig. 7 shows the maximum growth rate as a function of βZ0

and �0. Large �0 ∼ 102 corresponds to the ideal MHD limit, where
maximum growth rate drops to ∼5 × 10−3 for βZ0 = 104. It can be
seen that �0 < 1 is required for the fastest growing modes to recover
hydrodynamic results in a wide range of βZ0 from 104 to 1010.

The above results are similar to that for toroidal fields, which
indicates that the qualitative effect of a magnetic field and resistivity
on the VSI does not depend on the background field geometry.

6.2 VSI versus MRI

To better compare the VSI and the MRI, we perform a vertically local
linear analysis in the incompressible limit with Ohmic resistivity. In
this local model, background quantities are assumed to be uniform
and its values set to that in the vertically global model (Section 6.1)
at some fiducial height. We take the vertical shear rate R∂
2/∂Z as
an input parameter. We consider axisymmetric perturbations that are
proportional to exp (σ t + ikRR + ikZZ). The wavenumber vector is
denoted by k = (kR, 0, kZ).
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2994 C. Cui and M.-K. Lin

Figure 8. Contours of growth rates as functions of βZ and radial wavenumber |K| by equation (84) in the ideal MHD limit. The vertical wavenumber is set to
be kZ = 2π/H, and ε = k2

Z/k2. Left: no vertical shear R∂
2/∂Z = 0. Right: with vertical shear R∂
2/∂Z = −0.1.

In the incompressible limit, the linearized equations derived from
equations (1), (2), and (7) become

ikRv′
R + ikZv′

Z = 0, (77)

σv′
R − 2
v′

φ + ikR

P ′

ρ
+ ikR

μ0ρ
B · B′ − iB ′

R

μ0ρ
k · B = 0, (78)

σv′
φ + κ2

2

v′

R + dvφ

dZ
v′

Z − iB ′
φ

μ0ρ
k · B = 0, (79)

σv′
Z + ikZ

P ′

ρ
+ ikZ

μ0ρ
B · B′ − iB ′

Z

μ0ρ
k · B = 0, (80)

σ̃B ′
R − ik · Bv′

R = 0, (81)

σ̃B ′
φ − ik · Bv′

φ −
[

κ2

2

− 2


]
B ′

R − dvφ

dZ
B ′

Z = 0, (82)

σ̃B ′
Z − ik · Bv′

Z = 0, (83)

where

k2 = k2
R + k2

Z,

σ̃ = σ + ηk2.

The above equations give a dispersion relation

[σ σ̃ + (k · vA)2]2 + k2
Z

k2
(κ2 − A)[σ̃ 2 + (k · vA)2]

−4
2(k · vA)2 k2
Z

k2
= 0, (84)

where

A = kR

kZ

R∂
2

∂Z
.

Equation (84) generalizes that of LP18 to include Ohmic resistivity.
Appendix A explores this dispersion relation in more detail in the

limit |kRBR| 	 |kZBZ|. Here, we solve equation (84) in full to
investigate the dominance of MRI and VSI as functions of disc
magnetizations βZ, radial wavenumbers K, and Elsässer numbers �.
A vertical wavenumber kZ = 2π/H is fixed in numerical calculations.
VSI modes require kR and kZ with opposite signs if ∂
/∂Z < 0 (N13;
LP18), as we will consider below, hence we use |K| to denote the
absolute value of K. Other background quantities are evaluated at
Z = 2H.

The left-hand panel of Fig. 8 shows local growth rates of MRI
modes in the ideal MHD limit (η = 0) without vertical shear
(R∂
2/∂Z = 0). In the white regions, the MRI is quenched by
strong magnetizations. It can be seen that the MRI modes prefer
small |K|, with a maximum growth rate of s = 0.75 at βZ =
137. In the right-hand panel of Fig. 8, we show growth rates
of VSI modes by setting R∂
2/∂Z = −0.1. The fastest growing
VSI modes prefer weak magnetization and large |K|, in contrast
to fast growing MRI modes. Local VSI modes with K = 150
and βZ = 109 have a growth rate s = 0.05, which is less than
that of the fastest growing surface mode s = 0.094 obtained
from vertically global analysis shown in the right-hand panel of
Fig. 3.

We next consider resistive discs. In the left-hand panel of Fig. 9,
we show growth rates as functions of βZ and � for MRI modes
by setting K = 0. In contrast to the VSI, MRI growth rates decline
towards small � as the MRI is dampened. In the right-hand panel of
Fig. 9, we show growth rates of mostly VSI modes by setting K =
150. For βZ � 105, we obtain VSI growth rates in the hydrodynamic
limit. For βZ � 105, the VSI is dampened for � � 10, but revived
with small � or strong resistivity.

Finally, in Fig. 10, we show the ratio of MRI growth rates obtained
from the left-hand panel of Fig. 9 to VSI growth rates obtained from
the right-hand panel of Fig. 9. For βZ � 105 the VSI dominates over
the MRI. For βZ � 105, which includes PPDs with typical βZ ∼ 104,
the VSI dominates if � � 0.09.
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Figure 9. Contours of growth rates as functions of β and Ohmic Elsässer number � by equation (84). The vertical wavenumber and vertical shear are set to be
kZ = 2π/H and R∂
2/∂Z = −0.1. Left: MRI modes (|K| = 0). Right: VSI modes (|K| = 150).

Figure 10. The ratio of MRI growth rates to VSI growth rates computed
from local dispersion relation equation (84).

7 D ISCUSSION

7.1 Comparison with previous works

LP18 carried out local linear analyses of the VSI in the ideal
MHD limit with an exact background equilibrium solution for a
purely poloidal field. In this work, we set up global equilibria for
a purely azimuthal field. Comparing our numerical solutions to
local analytical results, we find that the overall mode behaviour that

magnetization can stabilize the VSI is in agreement with each other.
Global numerical simulations of magnetized PPDs carried out by
Cui & Bai (2020) indeed show that magnetism tends to suppress the
VSI growth, whereas ambipolar diffusion acts to revive VSI modes.
Their simulations also show the absence of surface modes, which
is consistent with our findings that surface modes are the first to be
dampened with increasing field strengths.

Global simulations of PPDs initially threaded by a large-scale
poloidal magnetic field suggest a field configuration dominated by
the toroidal component once the disc reaches a quasi-steady state
(e.g. Bai 2017; Béthune et al. 2017; Cui & Bai 2020). This suggests
that, as far as the VSI is concerned, it is the disc model with an
azimuthal field that is more relevant, as employed in most of this
paper. Furthermore, the magnetization in our toroidal field model is
parametrized by β, which does not depend on the orientation of the
magnetic field. Our results are thus applicable to the aforementioned
simulations wherein the toroidal field reverses polarity across the
disc mid-plane because of the Keplerian shear.

7.2 Application to PPDs

In the outer part of the PPDs (�30 au), ambipolar diffusion is the
dominant non-ideal MHD effect, with Elsässer numbers approxi-
mately unity. For a purely azimuthal field, ambipolar diffusion acts
as an effective resistivity with field dependency (see Section 2.1.1).
Hence, our results for Ohmic resistivity are also applicable to
ambipolar diffusion. A value of �0 = 1 and βφ0 = 102 gives a
maximum growth rate of s = 0.087 (Fig. 6), which is close to the
hydrodynamic result, s = 0.094
K. In the inner part of the PPDs,
Ohmic resistivity becomes the dominant non-ideal MHD effect,
though the Hall effect also contributes. At 2 au, the mid-plane �0 =
5 × 10−4 (Bai 2017) gives a maximum growth rate of s = 0.094 for
a wide range from βφ0 = 10 to 109 (Fig. 6), as a small �0 enables
the recovery of hydrodynamic results.

Our locally isothermal disc models, which correspond to instanta-
neous cooling, favour the VSI because there is no stabilizing effect
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from vertical gas buoyancy (N13; Lin & Youdin 2015). However, in a
realistic PPD cooling time-scales are finite and is sensitive to stellar
irradiation and dust properties (Malygin et al. 2017; Flock et al.
2020; Pfeil & Klahr 2020). In magnetized discs, the magnetic field
will provide extra stabilization via magnetic buoyancy in addition to
gas buoyancy. Thus, we expect that in PPDs the required cooling time
may be shorter than that estimated based on purely hydrodynamic
models (Lin & Youdin 2015), unless �0 is small enough to diminish
the stabilizing effect from magnetic fields. Detailed analyses should
be conducted to give new critical cooling time-scales in magnetized
discs.

The analysis we present with Ohmic resistivity points to future
directions in including ambipolar diffusion and the Hall effect,
the latter of which requires a poloidal field. A few obstacles and
complications need to be resolved when incorporating these two
non-ideal MHD effects. First, it is difficult to find appropriate
background equilibria in a global model because of the vertical
shear, especially for in presence of poloidal magnetic fields (Ogilvie
1997). Furthermore, ambipolar diffusion gives rise to anisotropic
damping and introduces the ambipolar shear instability (Blaes &
Balbus 1994; Kunz & Balbus 2004; Kunz 2008). The Hall effect will
further introduce the Hall shear instability, and its effect is polarity
dependent (Balbus & Terquem 2001; Kunz 2008). All of these effects
will complicate the problem and deserve step-by-step analyses in
local and global disc models in the future.

7.3 Implications for dust dynamics

Small dust grains tend to settle towards the disc mid-plane (Dubrulle
et al. 1995). However, the VSI drives turbulence that can vertically
mix up dust particles (Stoll & Kley 2016; Flock et al. 2017, 2020).
On the other hand, our results show that strong magnetization can
stabilize the VSI away from the disc mid-plane, implying a limit
on the vertical extent of the ensuing VSI turbulence and therefore
a maximum dust layer thickness, Hd, max. For definiteness, consider
a purely toroidal field with constant β and neglect non-ideal MHD
effects. The destabilizing vertical shear, R∂
2/∂Z, competes against
the stabilizing magnetic buoyancy, N2

Z . We therefore expect the VSI
to be suppressed where

∣∣R∂
2/∂Z
∣∣ /N2

Z < ζ , where ζ is some
critical ratio.5 Using equations (25) and (37), we estimate

Hd,max

H
= βh |qT|

ζ
, (85)

assuming β 
 1 and a thin disc. The example in Fig. 4 with β =
102, h = 0.05, and qT = 1 shows that gas motions are negligible for
|Z| � 2H, which suggest ζ � 2.5.

One may ask if Hd, max can be made sufficiently small to constrain
particles to a dense mid-plane layer that can undergo, for example,
the streaming instability and hence facilitate planetesimal formation
(Youdin & Goodman 2005; Johansen, Youdin & Mac Low 2009). For
dynamical growth, the streaming instability requires a local dust-to-
gas mass ratio ν � 1. The metallicity is �d/�g = νHd/H, where �d

and �g are the dust and gas surface densities, respectively, and Hd is
the characteristic dust scale height. Thus, if we take Hd = Hd,max/2,
then

β = 2ζ

ν |qT| h
�d

�g
. (86)

5For the hydrodynamic VSI, ζ ∼ 
tcool, where tcool is the cooling time-scale
(Lin & Youdin 2015).

Inserting typical PPD values
(
qT, h, �d/�g

) � (1, 0.05, 0.01), we
find an equipartition field strength, β = 1, would be required to
confine dust into a thin layer such that ν ∼ 1 by quenching the VSI
elsewhere. Such a strong field is unrealistic for PPDs (e.g. Simon
et al. 2013a; Bai 2015). This suggests that magnetic fields do not
affect the vertical dust structure in PPDs through its geometric effect
on the VSI.

Instead, magnetic effects likely manifest through weakening the
VSI and hence the ensuing turbulence, as found in this work and
Cui & Bai (2020). This determines Hd � √

δZ/StHg (Dubrulle
et al. 1995), where St is the particle Stokes number and δZ is
the dimensionless vertical diffusion coefficient associated with VSI
turbulence. We expect δZ to drop with stronger magnetization and to
increase with stronger non-ideal MHD effects. This relation should
be calibrated with future simulations, which can then be used to
estimate magnetic field strengths from the vertical distribution of
dust in PPDs.

8 C O N C L U S I O N S

In this work, we perform linear analyses of the VSI under the
ideal MHD limit and with Ohmic resistivity. A vertically global
and radially local disc model is employed to properly accommodate
the characteristic VSI modes of elongated vertical wavelengths. A
locally isothermal equation of state is assumed to better focus on the
effect of magnetism. Our main findings are summarized as follows.

(i) In the ideal MHD limit, magnetic fields operate as a stabilizing
effect to suppress the growth of VSI modes. Surface modes are the
first to vanish rather than body modes with increasing magnetic field
strengths. Ohmic resistivity acts as destabilizing effect to assist the
VSI growth.

(ii) In weakly magnetized discs, surface modes show maximum
growth rates at large radial wavenumbers, while in strongly mag-
netized discs, surface modes are dampened, while body modes are
dominant and prefer intermediate radial wavenumbers. Large disc
aspect ratios or vertical shear rates lead to fast VSI growth.

(iii) The MRI modes appear when a poloidal magnetic field is
present. In the local analysis, we find that MRI and VSI modes
dominate at different βZ and � in the ideal MHD limit. MRI prefers
relatively strong disc magnetizations and small radial wavenumbers.
The VSI modes are most effective at weak magnetizations and large
radial wavenumbers. With Ohmic resistivity, a typical value of βZ =
104 in PPDs results in a critical � � 0.09 for the dominance of the
VSI.
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APPENDI X A : PRO PERTI ES O F THE LOCAL
DI SPERSI ON RELATI ON

We explore the properties of the local dispersion relation equa-
tion (84) in the limit of |kRBR| 	 |kZBZ|. When there is no vertical
shear, R∂
2/∂Z = 0, equation (84) is identical to the dispersion
relation for the MRI in equation (22) of Sano & Miyama (1999).
When there is no magnetic field, vAZ = 0 and η = 0, our dispersion
relation recovers equation (34) of Goldreich & Schubert (1967) in
the case when Brunt–Väisälä frequency vanishes. When there is a
magnetic field but η = 0, the dispersion relation recovers equation
(58) of LP18.

In the hydrodynamic limit, vAZ = 0 and η = 0, the dispersion
relation resembles that of pure VSI,

σ 2 + k2
Z

k2
(
2 − A) = 0. (A1)

Defining ε ≡ k2
Z/k2 and taking ∂
/∂Z < 0 without loss of generality,

we can write kR/kZ = −(1/ε − 1)1/2. The most unstable wavenumbers
satisfy


 = −2ε(1/ε − 1) − 1

ε(1/ε − 1)1/2

R∂


∂Z
. (A2)

MNRAS 505, 2983–2998 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2983/6286927 by Academ
ia Sinica user on 25 June 2021

http://dx.doi.org/10.1051/0004-6361:20035896
http://dx.doi.org/10.1146/annurev-astro-081710-102521
http://dx.doi.org/10.1088/0004-637X/739/1/51
http://dx.doi.org/10.1088/0004-637X/772/2/96
http://dx.doi.org/10.1088/0004-637X/798/2/84
http://dx.doi.org/10.3847/1538-4357/aa7dda
http://dx.doi.org/10.1088/0004-637X/736/2/144
http://dx.doi.org/10.1088/0004-637X/769/1/76
http://dx.doi.org/10.3847/0004-637X/818/2/152
http://arxiv.org/abs/0906.0854
http://dx.doi.org/10.1086/170270
http://dx.doi.org/10.1086/320452
http://dx.doi.org/10.1093/mnras/stv640
http://dx.doi.org/10.1051/0004-6361/201630056
http://dx.doi.org/10.1051/0004-6361/200913731
http://dx.doi.org/10.1086/173634
http://dx.doi.org/10.1103/PhysRevResearch.2.023068
http://dx.doi.org/10.3847/1538-4357/ab76ca
http://dx.doi.org/10.1146/annurev-earth-040809-152513
http://dx.doi.org/10.1086/304869
http://dx.doi.org/10.1093/mnras/235.2.365
http://dx.doi.org/10.3847/1538-4357/ab7194
http://dx.doi.org/10.1086/591239
http://dx.doi.org/10.1006/icar.1995.1058
http://dx.doi.org/10.3847/1538-4357/ab8cc5
http://dx.doi.org/10.3847/1538-4357/aab615
http://dx.doi.org/10.3847/1538-4357/aa79f9
http://dx.doi.org/10.3847/1538-4357/aa943f
http://dx.doi.org/10.3847/1538-4357/ab9641
http://dx.doi.org/10.1051/0004-6361/202039294 
http://dx.doi.org/10.1086/176735
http://dx.doi.org/10.1093/mnras/270.1.138
http://dx.doi.org/10.1086/149360
http://dx.doi.org/10.3847/1538-4357/ab91b7
http://dx.doi.org/10.1088/0004-637X/801/2/84
http://dx.doi.org/10.1086/497118
http://dx.doi.org/10.1038/nature06086
http://dx.doi.org/10.1088/0004-637X/704/2/L75
http://dx.doi.org/10.1088/0004-637X/788/1/21
http://dx.doi.org/10.1086/344743
http://dx.doi.org/10.1006/icar.1997.5720
http://dx.doi.org/10.1111/j.1365-2966.2008.12928.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07383.x
http://dx.doi.org/10.1093/mnras/stv2449
http://dx.doi.org/10.1093/mnras/stx3031
http://arxiv.org/abs/2007.15967
http://dx.doi.org/10.1051/0004-6361/200913594
http://dx.doi.org/10.1093/mnras/stw2172
http://dx.doi.org/10.1093/mnras/stz701
http://dx.doi.org/10.1088/0004-637X/811/1/17
http://dx.doi.org/10.1086/172669
http://dx.doi.org/10.1088/0004-637X/789/1/77
http://dx.doi.org/10.1088/1538-3873/aaf5ff
http://dx.doi.org/10.1051/0004-6361/201629933
http://dx.doi.org/10.1093/mnras/sty1909
http://dx.doi.org/10.1088/0004-637X/808/1/87
http://dx.doi.org/10.1103/PhysRevLett.111.084501
http://dx.doi.org/10.1093/mnras/stt1475
http://dx.doi.org/10.1111/j.1365-2966.2004.07406.x
http://dx.doi.org/10.1093/mnras/288.1.63
http://dx.doi.org/10.1051/0004-6361:20066899
http://dx.doi.org/10.1111/j.1365-2966.2004.07566.x
http://dx.doi.org/10.1088/0004-637X/727/1/2
http://dx.doi.org/10.1086/430940
http://dx.doi.org/10.1086/511513
http://dx.doi.org/10.1086/511523
http://dx.doi.org/10.3847/1538-4357/aaf962
http://arxiv.org/abs/2008.11195
http://dx.doi.org/10.1088/0004-637X/804/1/35
http://dx.doi.org/10.1093/mnras/stv2898
http://dx.doi.org/10.1086/307063
http://dx.doi.org/10.1051/0004-6361/201937371
http://dx.doi.org/10.1088/0004-637X/775/1/73
http://dx.doi.org/10.1088/0004-637X/764/1/66
http://dx.doi.org/10.1051/0004-6361/201424114
http://dx.doi.org/10.1051/0004-6361/201527716
http://dx.doi.org/10.1051/0004-6361/201628550
http://dx.doi.org/10.3847/1538-4357/ab899d
http://dx.doi.org/10.1051/0004-6361/201526494
http://dx.doi.org/10.3847/0004-637X/830/2/95
http://dx.doi.org/10.1051/0004-6361:20030513
http://dx.doi.org/10.1046/j.1365-8711.1998.01118.x
http://dx.doi.org/10.1007/s10509-007-9575-8
http://dx.doi.org/10.1126/sciadv.aba5967
http://dx.doi.org/10.1086/426895
http://dx.doi.org/10.1016/j.icarus.2007.07.012


2998 C. Cui and M.-K. Lin

Figure A1. Maximum growth rates and most unstable wavenumber are shown as functions of Ohmic Elsässer number � by equation (A4) at fixed Alfvén
velocity and R∂
2/∂Z = −0.1. Dashed lines are asymptotic solutions in the limit of η → 0 (equations A5 and A6) and η → ∞ (equations A7 and A8).

The vertical shear rate is on the order of −R∂
/∂Z ∼ O(
h) via
equation (31), hence −
/(R∂
/∂Z) ∼ O(h−1), which requires ε to
be small. Therefore, the above equation can be written as

h−1 ≈ lim
ε→0

2ε(1/ε − 1) − 1

ε(1/ε − 1)1/2
≈ ε−1/2, (A3)

so that k2
Z/k2 ∼ h2 and the maximum growth rate is σ max ∼ O(
h),

which recovers the results in N13.
The full dispersion relation (84) is implicit in σ and k. To obtain

the maximum growth rate, we take the derivative ∂/∂k for each term
on the left-hand side and assume ε to be a constant. This yields
a relation between the maximum growth rate σ max and the most
unstable wavenumber k,

2k2 = v2
AZ(−2σ 2ε + 3
2ε2 + Aε2) − 2ση[σ 2 + (
2 − A)ε]

v4
AZε2 + 2ησv2

AZε + η2[σ 2 + (
2 − A)ε]
. (A4)

The maximum growth rate is computed numerically by substituting
k in equation (84), and the results are shown in Fig. A1. In the limit

of weak resistivity η → 0, the maximum growth rate and the most
unstable wavenumber are

σ 2
max = 9
2 + A[(6
2 + A)/
2]

16
ε, (A5)

k2 = 15
2 + A(2
2 − A)/
2

16v2
AZ

. (A6)

When there is no vertical shear A = 0, these expressions recover the
MRI channel modes. When η → ∞,

σ 2
max = (3
2 + A)2

16(
2 − A)2

v4
AZ

η2
ε2, (A7)

k2 = (3
2 + A)

4(
2 − A)

v2
AZ

η2
ε, (A8)

and we recover Sano & Miyama (1999) when A = 0.
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