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ABSTRACT

The standard core accretion model for planetesimal formation in protoplanetary discs (PPDs) is subject to a number of challenges. One
is related to the vertical settling of dust to the disc mid-plane against turbulent stirring. This is particularly relevant in the presence
of the vertical shear instability (VSI), a purely hydrodynamic instability applicable to the outer parts of PPDs, which drives moderate
turbulence characterized by large-scale vertical motions. We investigate the evolution of dust and gas in the vicinity of local pressure
enhancements (pressure bumps) in a PPD with turbulence sustained by the VSI. Our goal is to determine the morphology of dust
concentrations and if dust can concentrate sufficiently to reach conditions that can trigger the streaming instability (SI). We performed
a suite of global 2D axisymmetric and 3D simulations of dust and gas for a range of values for Σd/Σg (ratio of dust-to-gas surface mass
densities or metallicity), particle Stokes numbers, τ, and pressure bump amplitude, A. Dust feedback onto the gas is included. For the
first time, we use global 3D simulations to demonstrate the collection of dust in long-lived vortices induced by the VSI. These vortices,
which undergo a slow radial inward drift, are the dusty analogs of large long-lived vortices found in previous dust-free simulations of
the VSI. Without a pressure bump and for solar metallicity Z ≈ 0.01 and Stokes numbers τ ∼ 10−2, we find that such vortices can reach
dust-to-gas density ratios slightly below unity in the discs’ mid-plane, while for Z & 0.05, long-lived vortices are largely absent. In the
presence of a pressure bump, for Z ≈ 0.01 and τ ∼ 10−2, a dusty vortex forms that reaches dust-to-gas ratios of a few times unity, such
that the SI is expected to develop, before it eventually shears out into a turbulent dust ring. At intermediate metallicities, Z ∼ 0.03,
this occurs for τ ∼ 5 × 10−3, but with a weaker and more short-lived vortex, while for larger τ, only a turbulent dust ring forms. For
Z & 0.03, we find that the dust ring becomes increasingly axisymmetric for increasing τ and dust-to-gas ratios reach order unity for
τ & 5×10−3. Furthermore, the vertical mass flow profile of the disc is strongly affected by dust for Z & 0.03, such that gas is transported
inward near the mid-plane and outward at larger heights, which is the reversed situation compared to simulations with zero or small
amounts of dust. We find viscous α-values to drop moderately as ∼10−3–10−4 for metallicities increasing as Z = 0–0.05. Our results
suggest that the VSI can play an active role in the formation of planetesimals through the formation of vortices for plausible values of
metallicity and particle size. Also, it may provide a natural explanation for the presence or absence of asymmetries of observed dust
rings in PPDs, depending on the background metallicity.
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1. Introduction

The standard core accretion scenario for planet formation
(Safronov 1972) proposes the growth of micron-sized dust par-
ticles until they become planetesimals of a size between 1 km–
1000 km that are then subsequently capable of accreting enough
solids (Wetherill 1990; Kenyon & Luu 1999) to become terres-
trial planets. Furthermore, if they are sufficiently massive, gas
accretion is also likely (Mizuno 1980) to become gas giant plan-
ets. This scenario is faced with several difficulties. For one, it
has been shown that micron-size dust particles hit a so called
bouncing barrier when reaching sizes of mms to cms (Blum
2018) upon which further growth due to collisions is hindered.
On the other hand, gas drag causes rapid loss of pebbles due
to radial drift (Weidenschilling & Cuzzi 1993; Johansen et al.
2014). One possible way to avoid these problems is via a direct
self-gravitational collapse of dust grains following their settling
to the disc mid-plane (Goldreich & Ward 1973). However, for
this to happen, self-gravity must overcome stellar tidal forces as
well as collective pressure forces of the dense dust-layer. This, in

turn, requires dust-to-gas ratios that are much larger than those
typically expected in newly formed protoplanetary discs (Shi &
Chiang 2013).

Therefore, processes that can efficiently concentrate dust are
actively researched at present. The most popular of these is the
streaming instability (SI, Youdin & Goodman 2005; Johansen
& Youdin 2007; Youdin & Johansen 2007), a linear dust-gas
drag instability. In its original form, which is formulated for
an unstratified, monodisperse, and unmagnetized dusty disc, the
SI draws energy from the radial dust-gas relative motion. In its
nonlinear state, it can lead to strong dust clumping and, hence,
contribute to planetesimal formation (Johansen et al. 2009a; Bai
& Stone 2010; Simon et al. 2016). However, the strong clumping
of pebbles typically requires super-solar values of the vertically-
integrated dust-to-gas ratio or metallicity (Johansen et al. 2009a;
Bai & Stone 2010; Carrera et al. 2015; Yang et al. 2017; Li
& Youdin 2021). It is therefore assumed that additional pro-
cesses are required to trigger the SI. These processes include
particle concentration in zonal flows (Johansen et al. 2009b),
pressure bumps (Haghighipour & Boss 2003a,b; Taki et al. 2016;
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Onishi & Sekiya 2017; Huang et al. 2020), vortices (Barge &
Sommeria 1995; Johansen et al. 2004; Klahr & Bodenheimer
2006; Fu et al. 2014; Crnkovic-Rubsamen et al. 2015; Raettig
et al. 2015; Miranda et al. 2017; Surville & Mayer 2019), or
other instabilities such as dust settling instability (DSI, Squire
& Hopkins 2018; Krapp et al. 2020).

In this work, we are particularly interested in dust trapping by
pressure bumps and vortices. We are motivated by recent ALMA
observations that indicate dust rings – presumably reflective
of an underlying pressure bump – are common in bright discs
(Andrews et al. 2018; Long et al. 2018); whereas asymmetric
dust distributions – possibly reflective of vortices – constitute a
smaller, but non-negligible fraction of observed disc morpholo-
gies (van der Marel et al. 2021). Carrera et al. (2021a) showed
SI can indeed be triggered in the vicinity of a moderate pressure
bump embedded in a disc with solar metallicity and cm-sized
dust particles, which then leads to planetesimal formation. On
the other hand, while dust trapping by vortices has been shown to
be efficient, in razor-thin disc simulations, vortices eventually get
disrupted due to dust-gas instabilities once the dust-to-gas ratio
reaches the order of unity (Fu et al. 2014; Crnkovic-Rubsamen
et al. 2015; Raettig et al. 2015; Surville & Mayer 2019). How-
ever, Lyra et al. (2018) and Raettig et al. (2021) found that in
3D, vortices do not suffer from destruction because dust feed-
back is only important in the disc mid-plane, while their vortices
are vertically extended. It is also possible to have a combina-
tion of pressure bumps and vortices, for example, through the
Rossby wave instability (RWI, Lovelace et al. 1999; Li et al.
2001), in the case of which long-lived, dust-trapping vortices do
indeed form (Meheut et al. 2012). Understanding the evolution of
dust rings and asymmetries has direct application to interpreting
observations.

One important element that may influence the aforemen-
tioned dust trapping processes is external turbulence. Ever
since the discovery of the magneto-rotational-instability (MRI,
Balbus & Hawley 1991), accretion in protoplanetary discs was
thought to be mediated by MRI turbulent stresses. However,
due to low ionization rates in protoplanetary discs, the MRI is
most likely extinguished within a region of about ∼1–10 AU,
known as the “dead zone” (Gammie 1996; Turner & Drake
2009; Armitage 2011; Turner et al. 2014). In fact, recent state-
of-the-art magneto-hydrodynamical models show that the inner
parts of protoplanetary discs between roughly ∼1–20 AU are
indeed largely laminar and exhibit angular momentum trans-
port induced by magneto-thermal winds and laminar Maxwell
stresses (Gressel et al. 2015; Bai 2015, 2017).

Nonetheless, turbulence in this planet-forming region may
still be present owing to the possible occurrence of purely
hydrodynamic instabilities. This includes the VSI (Urpin &
Brandenburg 1998; Urpin 2003; Nelson et al. 2013; Barker &
Latter 2015; Lin & Youdin 2015), requiring a vertically sheared
angular velocity profile coupled with rapid cooling of the gas;
subcritical baroclinic instability (SBI, Klahr & Bodenheimer
2003; Lesur & Papaloizou 2010; Lyra & Klahr 2011); convective
overstability (COS, Klahr & Hubbard 2014; Lyra 2014; Latter
2016), which requires an unstable radial entropy gradient cou-
pled with a local gas cooling time on the order of the orbital time
scale; and zombie vortex instability (ZVI, Marcus et al. 2015;
Lesur & Latter 2016), which requires slow cooling. A common
outcome of these hydrodynamic instabilities is vortex forma-
tion, which could seed the SI by accumulating dust, as described
above. However, vortex dust trapping has not been simulated
explicitly in the case of the VSI and the ZVI, nor has the effect

of global disc structures (such as a pressure bump) on any of the
above hydrodynamic instabilities.

The aim of this paper is to study the efficiency of dust con-
centration at pressure bumps and vortices in VSI-turbulent discs.
We focus on the VSI because it is a generic phenomenon in the
sense that the only structural requirement for it to occur is a radial
gradient in temperature or entropy of in principle arbitrary sign,
which produces a vertical gradient in the disc’s rotation. Based
on models that account for a finite disc cooling time, the VSI
is expected to be active at tens of AU (Lin & Youdin 2015). A
few studies considered the nonlinear evolution of gas and dust in
VSI-turbulent protoplanetary discs by means of global hydrody-
namic simulations. Stoll & Kley (2014, 2016) ran 3D simulations
with a thermal disc structure governed by stellar irradiation and
radiation transport. They found that the VSI is able to generate
particle clumps that can, in principle, trigger the SI. Flock et al.
(2017) and Flock et al. (2020), employing a similar method, but
covering a larger radial domain, (Flock et al. (2020) additionally
covering the full 360 degree azimuth, as well as higher resolu-
tion, concluded that the VSI is rather an impediment for the early
and late phases of planet formation. That is, they found that on
the one hand the strong vertical gas motions generated by the VSI
effectively lift 0.1–1 mm-sized dust particles such that these are
prevented from settling to larger densities at the disc mid-plane.
On the other hand, they concluded that accretion of mm-sized
pebbles onto planetary embryos in the terrestrial mass range is
rendered inefficient by the VSI as the dust-layer thickness likely
exceeds the planetary Hill sphere. Picogna et al. (2018) studied
the accretion of pebbles with a wide variety of sizes onto plane-
tary cores in a VSI turbulent disc. They found that at ∼5 AU the
fastest growth of protoplanets is achieved for pebbles with τ ∼ 1
on account of their fast drift rates. Moreover, they found that the
effect of the VSI on this process can be well described through
an α-viscosity accompanied by stochastic “kicks” on particles.

However, these studies did not include the dust’s back reac-
tion force onto the gas that arises from their mutual frictional
drag. Lin & Youdin (2015) showed that while the VSI is driven
by a vertical shear in the gas velocity, it is mitigated by buoy-
ant forces that are usually associated with an adiabatic gas. On
the other hand, Lin & Youdin (2017) showed that an isothermal,
dusty gas can effectively be described by an imperfectly adia-
batic gas for which the finite coupling time between gas and
dust as well as global gas temperature gradients act as sources
or sinks for the effective entropy of the dust-gas mixture. One
important aspect resulting from this model is that the presence
of dust leads to an effective buoyancy frequency of the dusty
gas, which – under normal conditions – is greater than that of
the gas in isolation. Moreover, linear stability calculations of Lin
& Youdin (2017) suggest that this dust-induced buoyancy indeed
leads to a weakening of the VSI which can promote dust settling.
This was confirmed by Lin (2019) with nonlinear axisymmet-
ric hydrodynamic simulations adopting the single fluid model
of Lin & Youdin (2017). Furthermore, Lin (2019) showed that
dust-to-gas density ratios of a few times the solar value are suffi-
cient to enable efficient settling of particles with Stokes numbers
in the range τ ∼ 10−3–10−2. However, Lin (2019) did not con-
sider the possible role of pressure bumps and, in addition, their
axisymmetric model precludes vortex formation.

In this work, we employ global 2D axisymmetric and non-
axisymmetric 3D simulations of a PPD to investigate the condi-
tions under which a gas pressure bump in a VSI-turbulent disc
can raise the local dust-to-gas ratio to such levels that the SI
can be triggered to facilitate planetesimal formation. Another
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question that we aim to answer is whether dust particles will
tend to concentrate in vortices or in rings, and whether rings are
axisymmetric or not, depending on the disc and dust parameters.
Regarding the first point, we show in this work that a moderate
pressure bump (A & 0.2) can collect sufficient amounts of dust
to reach order unity dust-to-gas ratios even for solar metallicities
Z = 0.01, provided that dust particles have sizes with τ & 10−2.
Moreover, we show that the shapes of dust concentrations at
a pressure bump become more axisymmetric with increasing
metallicity and Stokes number. Generally, a non-axisymmetric
appearance of dust rings or the occurrence of vortices requires
metallicities of Z . 0.03 in our model.

The paper is structured as follows. In Sect. 2, we describe
the basic hydrodynamic equations and the model disc that will
be the initial state of our hydrodynamical simulations. There we
review basic aspects of dust-gas interaction and the effect of a
pressure bump on dust drift. A brief description of the single
fluid model of dust and gas, its resulting stability criteria, and
the VSI are also provided. This will aid in interpreting the results
from our full two-fluid simulations. In Sect. 3, we present and
discuss the results of 2D simulations and in Sects. 4 and 5 those
of 3D simulations. In Sect. 6, we provide a summary and some
conclusions following from our results, as well as prospects for
future research.

2. Hydrodynamic disc model

2.1. Basic equations

We consider a global hydrodynamic model of a PPD consist-
ing of gas and a single species of dust, governed by the set of
dynamical equations:
(
∂

∂t
+ ug · ∇

)
ρg = −ρg

(
∇ · ug

)
, (1)

(
∂

∂t
+ ug · ∇

)
ug = − 1

ρg
∇P +

1
ρg
∇ · T̂ − ∇Φ∗ − ε

ts

(
ug − ud

)
, (2)

(
∂

∂t
+ ud · ∇

)
ρd = −ρd (∇ · ud) + ∇ · (νρ∇ fd

)
, (3)

(
∂

∂t
+ ud · ∇

)
ud = −∇Φ∗ − 1

ts

(
ud − ug

)
, (4)

where ρg, ρd, ug and ud are the gas and dust volume mass densi-
ties and 3D gas and dust velocities, respectively, in a non-rotating
frame with cylindrical coordinates (r, ϕ, z) and with origin on
a central star of mass M∗ with gravitational potential Φ∗ =

−GM∗/
√

r2 + z2, where G is the gravitational constant. The indi-
rect gravitational term, stemming from the fact that the center of
mass of the system does not coincide with the center of the star,
is ommitted. Furthermore, we neglected self-gravity and mag-
netic fields. The remaining symbols in the above equations are
explained below.

We adopt a locally isothermal equation of state for the gas
such that the pressure is:

P = c2
sρg, (5)

where the squared sound-speed follows a power-law with con-
stant index −q:

c2
s (R) = c2

s0

(
r
r0

)−q

. (6)

The reference sound-speed cs0 = cs(r0), where r0 is a reference
radius. Unless otherwise stated, we take q = 1. This value is a
bit larger than what is typically expected at large radii in PPDs
where the temperature profile is set by stellar irradiation (e.g.
Andrews et al. 2009). However, our choice facilitates a com-
parison with the isothermal simulations by Nelson et al. (2013),
Stoll & Kley (2016), and Richard et al. (2016), as well as Manger
& Klahr (2018) and Manger et al. (2020), who used the same
value. Moreover, it also has the advantage of a radially constant
disc aspect ratio such that the required vertical resolution in our
simulations is independent of radius. The characteristic gas pres-
sure scale height, Hg = cs/ΩK, where ΩK ≡

√
GM∗/r3 is the

Keplerian frequency.
The dust component is treated as a pressureless fluid that

interacts with the gas through a friction force (Johansen et al.
2014) quantified by the stopping time1.

ts =
rdρd

ρgcs
, (7)

where rd and ρd stand for the particle radius and bulk density,
respectively. The stopping time is the characteristic timescale for
a grain to reach velocity equilibrium with its surrounding gas.
The fluid approximation for dust is valid for sufficiently small ts
(Jacquet et al. 2011). Typically, we work with the dimensionless
Stokes number:

τ = ΩKts. (8)

Grains with τ � 1 are tightly (but not necessarily perfectly) cou-
pled to the gas, which either corresponds to small grain sizes or
to small distances to the star where the gas density is appreciably
higher. The former case is the one that applies to this paper. The
Stokes number at r = r0, z = 0, and time t = 0, denoted by τ0,
will be a freely specifiable parameter in our model. This means
that for a given particle radius and bulk density, its stopping time
at a certain location and at a certain time is given by:

ts =
τ0

Ω(r0)
ρg(r0, z = 0, t = 0) cs(r0)

ρgcs
. (9)

We also define

ε =
ρd

ρg
, (10)

fd =
ρd

ρ
, (11)

as the dust-to-gas density ratio and the dust fraction, respectively,
with the total density ρ = ρg + ρd. We note that fd = ε/(1 + ε).

Finally,

T̂ = ρgν

[
∇ug +

(
∇ug

)† − 2
3

Û∇ · ug
]

is the viscous stress tensor with a (constant) kinematic viscos-
ity, ν, which also describes dust diffusion via the diffusion term
in Eq. (3). The symbol † denotes the conjugate transpose and
Û stands for the unit tensor. Viscous terms are only included
to ensure numerical stability. Hence, ν is chosen to be very
small and in derivations which follow below viscous terms are
neglected. In particular, ν is much smaller than the typical value
of the α-viscosity (defined in Sect. 2.5) measured in simulations.
1 Strictly cs should be replaced by the mean thermal gas velocity
(Weidenschilling 1977) which differs from cs by a factor

√
8/π. For

convenience we absorb this factor in the particle size rd.
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2.2. One-fluid model for dust and gas

Our numerical simulations are based on evolving Eqs. (1)–(4)
directly (Sect. 2.5). However, as shown by Lin & Youdin (2017),
many important aspects of dust-gas dynamics can be described
within a reduced one-fluid model, governed by the following set
of equations:
(
∂

∂t
+ u · ∇

)
ρ = −ρ (∇ · u) , (12)

(
∂

∂t
+ u · ∇

)
u = −1

ρ
∇P − ∇Φ∗, (13)

(
∂

∂t
+ u · ∇

)
Seff = −u · ∇ ln c2

s +
c2

s

P
∇ · (teff fd∇P

)
, (14)

with density:

ρ = ρg + ρd,

the center of mass velocity:

u =
ρgug + ρdud

ρ
, (15)

and where the “effective” (dimensionless) entropy of the dust–
gas mixture is defined by:

Seff = ln
P
ρ
, (16)

and the effective particle stopping time by:

teff = ts
ρg

ρ
. (17)

These equations can be derived from Eqs. (1)–(4) and (5) if
dust and gas relative velocities are fixed by the terminal velocity
approximation:

ug − ud = − teff

ρg
∇P, (18)

which is valid for small particles which are tightly coupled to the
gas (Youdin & Goodman 2005). For a more general set of one-
fluid equations, see Laibe & Price (2014). We use Eqs. (12)–(14)
to motivate the ground state of our disc.

Within this formalism the dust fraction is related to the gas
pressure (and temperature) via Eqs. (5) and (11) such that

fd = 1 − P
c2

sρ
. (19)

Similarly, we can define a reduced temperature of the dust-gas
mixture

Tred ≡ µ

R
P
ρ

= T
(
1 − fd

)
, (20)

with the gas constant, R, and the mean molecular weight µ, such
that an increased dust fraction corresponds to a reduced tem-
perature. Furthermore, the flux term (second term on the right
hand side of Eq. (14)) stems from the fact that dust drifts into
the direction of increasing pressure, as reflected by Eq. (18).

Hence, the mixture of a locally isothermal gas with tightly cou-
pled dust behaves as a single-component adiabatic fluid with a
non-vanishing energy flux due to the exchange of dust between
adjacent fluid parcels and an entropy source term resulting from
the imposed global gas temperature profile.

A detailed derivation of this model and applications to vari-
ous dusty analogs of pure gas instabilities can be found in Lin &
Youdin (2017). Here, we merely summarize the important quan-
tities that govern the ground state of our disc and its stability,
which can be directly derived from Eqs. (12)–(14). Following
Lin (2019), we assume a Gaussian dust-to-gas ratio distribution
of

ε(r, z) = εmid(r) exp
− z2

2H2
ε

 , (21)

where the gas and dust scale heights are implicitly defined via

1
H2
ε

=
1

H2
d

− 1
H2

g
. (22)

This ansatz suggests that ρd follows a Gaussian with scale height,
Hd, and ρg follows a Gaussian with scale height, Hg, which
is indeed nearly the case as shown below. The initial mid-
plane dust-to-gas ratio εmid(r) is chosen such that the radial
contribution to the effective entropy source vanishes, namely:

∂

∂r

(
teff fd

∂P
∂r

)
= 0, (23)

to reduce the radial evolution of the initial state (see also Chen &
Lin 2018). Of course, in a stratified disc the vertical contribution
cannot be zero without diffusion, which results in dust settling
(strictly speaking, thus, vz , 0). In practice, we set Hd . Hg such
that Hε � Hg; that way, the dust is initially well-mixed with the
gas. This enables us to define the ground state metallicity as:

Z ≡

Σd

Σg


0

= εmid


Hd

Hg


0
, (24)

with the dust and gas surface mass densities Σd and Σg, respec-
tively. Since Hd . Hg, this also means that εmid(r = r0) ≈ Z.
In addition to τ0 defined above, Z will also be a used as an
adjustable parameter in our simulations. The radial and vertical
components of Eq. (13) at equilibrium and under the assumption
of axisymmetry are expressed as:

Ω2r = Ω2
K

1 − 3
2

z2

r2

 +
1
ρ

∂P
∂r
, (25)

and

0 = −Ω2
Kz − 1

ρ

∂P
∂z
, (26)

where we defined the orbital frequency Ω = vφ/R and applied
the thin disc approximation, that is, a Taylor expansion of the
gravitational force term in Eq. (13) with respect to the quantity
z2/r2 to next leading order. In addition, we applied the condition
that the radial component of u identically vanishes. Furthermore,
we neglected the small contribution ∼( fd τ)2Ω2

K|z| � Ω2
K|z| due

to dust settling2. From Eq. (25), we obtain the orbital frequency

Ω(r, z) = ΩK

1 − 3
2

z2

r2 −
2ρg

ρ
η


1/2

, (27)

2 This term can be estimated from Eqs. (4) and (15) in the limit of small
τ and assuming vgz = 0.
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where we define:

η = − 1
2ρg(ΩKr)2

∂P
∂ ln r

, (28)

which was also defined in Youdin & Goodman (2005). Near the
disc mid-plane, we have η > 0 such that the dusty gas rotates
with sub-Keplerian frequency. Integration of Eq. (26) using (21)
yields the equilibrium gas density profile:

ρg = ρg,mid exp

−
z2

2H2
g
− εmid

H2
ε

H2
g

1 − exp
− z2

2H2
ε




 . (29)

As expected, for εmid → 0 we recover a Gaussian gas density
profile with scale height, Hg. In practice, deviations of the gas
density from the latter are small, since we consider εmid � 1,
Hε � Hg, and |z| is O(Hg).

We define:

ρg,mid(r) =
Σg(r)√
2πHg(r)

, (30)

such that the vertically integrated gas density yields the surface
density Σg(r), which we set to be

Σg(r) = Σg,0

(
r
r0

)−s

, (31)

with s = 3/2. The total surface density is Σ = Σg + Σd.

2.3. Dust drift and pressure bumps

Since our aim is to study the effect of a pressure bump on the
dust evolution in the disc, we modify the mid-plane density as:

ρg,mid(r)→ ρg,mid(r) ×
1 + A exp

−
(r − r0)2

2H2
g0





=
Σ0√

2πHg0

(
r
r0

)−p
1 + A exp

−
(r − r0)2

2H2
g0



 ,

(32)

with p ≡ s + (3 − q)/2. That is, we add a Gaussian density bump
of amplitude A and width Hg(r0) = Hg0 to the gas mid-plane
density profile. While the width of the bump will be kept fixed
throughout all simulations, its amplitude A will be varied. Sim-
ilar density bumps have been employed in numerous previous
studies (e.g., Meheut et al. 2012; Taki et al. 2016; Carrera et al.
2021a). With Eq. (32), the equilibrium azimuthal velocity in
Eq. (27) is now expressed as:

Ω(r, z) = ΩK



1 − 3
2

z2

r2 −
ρgH2

ρr2


p + q + r

r − r0

H2
g0

×
A exp

(
− (r−r0)2

2H2
g0

)

1 + A exp
(
− (r−r0)2

2H2
g0

)





1/2

.

(33)

If we restrict our considerations to a narrow region about the
mid-plane for the time being, we can neglect vertical gravity and

Fig. 1. Illustration of the initial mid-plane gas density profile (top
panel) according to Eq. (32) and the dust drift velocities (bottom
panel) computed from (36) with τ0 = 10−2 for different pressure bump
amplitudes A.

the results of unstratified discs apply. In particular, since our disc
is effectively inviscid the ground state planar velocities of dust
and gas are those derived by Nakagawa et al. (1986), that is:

ud =

[
rΩ − 1

2
ρg

ρ
τ vdrift

]
eϕ + vdrift er, (34)

ug =

[
rΩ +

1
2
ρd

ρ
τ vdrift

]
eϕ − ρd

ρg
vdrift er, (35)

where we defined

vdrift = −2
(
ρg

ρ

)2
ηΩKrτ

1 +
(
τρg/ρ

)2 . (36)

These ground-state velocities can be derived from Eqs. (2)
and (4) while neglecting vertical stratification. Solutions for α-
viscous discs that take into account the vertical disc structure can
be found, for instance, in Takeuchi & Lin (2002) and Kanagawa
et al. (2017).

The effect of a pressure bump (A > 0) in Eq. (33) has a pro-
found effect on dust drift. This is illustrated in Fig. 1 for different
amplitudes A and τ = 10−2. This figure shows how vdrift is essen-
tially controlled by the magnitude of η. Since η ∼ h2 ≡ (Hg/r)2

in PPDs (h = Hg/r being the disc aspect ratio), typical values are
η ∼ 10−2−10−3. For the most part, η > 0, so dust drifts inwards,
but η is non-uniform. The bump thus leads to a sort of “traffic
jam" accumulation of dust within a region ∆r ∼ Hg surrounding
the bump center. For the case of A = 0.4, the particle drift comes
to a complete halt at a certain radius. This is one reason why
pressure bumps in PPDs are expected to serve as the preferred
locations for planetesimal formation.
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2.4. Disc stability and the VSI

By combining Eqs. (25) and (26), we obtain:

r
∂Ω2

∂z
=

c2
s (r)

(1 + ε)2

×
[
∂ε

∂r
∂ ln ρg

∂z
− ∂ε
∂z
∂ ln P
∂r

+
q
r

(1 + ε)
∂ ln ρg

∂z

]
.

(37)

Hence, the disc’s equilibrium velocity profile is subjected to ver-
tical shear, which constitutes the driving force of the VSI. As
pointed out in Lin & Youdin (2017) and Lin (2019), in typical
situations, the main source of vertical shear is the disc’s global
temperature gradient, quantified through q. However, in regions
where sufficiently large gradients of ε occur, also the first two
terms in the bracket may play a role. We discuss this further
below.

Another important quantity for characterizing our disc is the
vertical Buoyancy frequency:

N2
z ≡ −

1
ρ

∂P
∂z

∂S eff

∂z
= c2

s
∂ ln ρg

∂z
∂ fd
∂z

, (38)

which quantifies the stabilizing effect of vertical entropy stratifi-
cation with respect to adiabatic perturbations. In our vertically
isothermal disc this quantity is entirely due to dust-layering.
As shown by Lin & Youdin (2017), “dusty” buoyancy mitigates
the VSI by stabilizing vertical motions, similarly to classical
buoyancy, if N2

z & r
∣∣∣∣ ∂Ω2

∂z

∣∣∣∣, which is satisfied within sufficiently
settled dust-layers. However, in the presence of strong VSI turbu-
lence corrugation of the dust-layer can result in situations where
∂ fd/∂z > 0 for z > 0 and, hence, N2

z < 0, such that vertical
convection may occur.

The occurrence of the VSI in a locally isothermal (dust-free)
disc as the one considered here has been established analyti-
cally by Nelson et al. (2013), Barker & Latter (2015), and Lin
& Youdin (2015). In addition, Nelson et al. (2013) conducted 3D
hydrodynamical simulations. Linear stability analyses presented
in these papers show that the VSI excites inertial waves that
are destabilized by free energy extracted from the disc’s vertical
shear. The dominant modes are so called “body modes,” which
constitute vertically global (lz ∼ hr), radially local (lx ∼ h2r),
low-frequency (∼hΩK) traveling inertial waves that result in
either corrugation or “breathing” motion of the disc with respect
to the mid-plane. The maximum linear growth rates σ of the
body modes in an isothermal disc are governed by the maximum
shear in the domain under consideration, namely:

|σ| < max

∣∣∣∣∣∣r
dΩ

dz

∣∣∣∣∣∣ ∼ ΩKqh,

where the latter similarity assumes a domain |z| . Hg. This
approximation remains applicable even in the presence of dust
(Lin & Youdin 2017). However, dust limits the amplitude of tur-
bulent velocity perturbations wherever dust-induced buoyancy
becomes significant.

Furthermore, Lin & Youdin (2017) provided the correspond-
ing Solberg–Høiland stability criteria for a dusty gas in the limit
of perfect coupling teff = 0 and vanishing radial temperature gra-
dient q = 0, such that the source terms in Eq. (14) vanish. These
criteria are expressed as:

κ2 +
1
ρg
∇P · ∇ fd > 0, (39)

− 1
ρg

∂P
∂z

−κ2 ∂ fd
∂z

+ r
∂Ω2

∂z
∂ fd
∂r

 > 0, (40)

where κ2 = r−3∂r

(
r4Ω2

)
is the epicycle frequency squared,

and determine the conditions for stability with respect to adia-
batic perturbations (Tassoul 1978). These are appropriate since
the dust-gas mixture under the aforementioned approximations
behaves like an adiabatic gas that conserves the entropy (16).
As discussed by Lin & Youdin (2017), the first criterion (39)
is expected to be fulfilled in typical situations due to alignment
of the two gradients in the second term and since the disc is
rotationally supported. The second criterion in Eq. (40) can,
in principle, be violated at locations where dust is well mixed
vertically but ε undergoes sufficiently strong radial variations.
Furthermore, if ∂ fd/∂z > 0 occurs for z > 0 the first term in the
brackets in Eq. (40) is expected to have a destabilizing effect.
We do indeed see that both situations can be realized under
certain circumstances in our simulations, which involve strong
corrugations of the dust-layer due to the VSI. However, this also
means that the VSI is required in first place to violate any of the
two criteria in our simulations. We come back to this issue in
Sect. 3.2.

Finally, an important instability that is directly involved
in the nonlinear saturation of the VSI is the RWI (Lovelace
et al. 1999), which can result in the formation of vortices.
This instability can be expected when the generalised vortensity,
namely:

L =
Σ

2ωz

(
Π

Σγ

)2/γ

, (41)

possesses a local extremum, where Π = c2
s Σg denotes the verti-

cally integrated pressure and where the z-component of vorticity
defined in the inertial frame is:

ωz = ez · ∇ × (u + Ω0r eϕ), (42)

and γ is the adiabatic index. It should be noted that although
Eq. (42) and other quantities above are defined using the center
of mass velocity in Eq. (15), the latter is nearly equal to both
the dust and gas velocities since dust is tightly coupled to the
gas in our model. Although the above condition was originally
derived for gaseous discs, our locally isothermal gas with tightly
coupled dust is equivalent to an adiabatic gas disc with γ = 1
(Lin & Youdin 2017). We therefore expect L to also play a role
in our simulations. We note that here, Π arises from the gas only,
but Σ accounts for both gas and dust. For brevity, we simply refer
to L as the vortensity.

As outlined in Richard et al. (2016), the VSI generates
axisymmetric vortensity rings. These become unstable to the
RWI, which consequently leads to the formation of vortices
while the vortensity extrema are destroyed (see also Manger &
Klahr 2018; Manger et al. 2020). Latter & Papaloizou (2018)
argue that in an isothermal disc, where the vertical shear is
strictly forced by the imposed global temperature gradient, the
amplitude of the VSI-related velocity perturbations is limited by
the emergence of Kelvin-Helmholtz parasitic modes that drain
energy from the VSI modes and transfer it to smaller scales
until viscous dissipation sets in. Based on theoretical arguments
Latter & Papaloizou (2018) estimate a maximal turbulent veloc-
ity amplitude of saturated VSI modes of a few percent to roughly
ten percent of cs. This is indeed in agreement with results from
previous isothermal simulations of the VSI and also with the
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Table 1. All 2D simulations.

Sect. 3 Sect. 4.1 Appendix A

Z (10−2) 1, 2, 3, 4, 5, 10 0, 1, 3, 5, 10 1, 3
τ0 (10−3) 1, 2, 3, 4, 5, 6, 10 1, 5, 10 6
A 0, 0.1, 0.2, 0.3, 0.4 0 0.4
p 2.5 2.5 2.5
q 1 1 0.1, 0.5, 0.75, 1
NR × Nθ 2160 × 480 1088 × 256 2160 × 480

Notes. Only one simulation presented in Sect. 4.1 adopted Z = 0 and
corresponds to the dust-free simulation.

results presented below. The parasitic modes may also result in
the formation of small-scale vortices. Moreover, the mid-plane
dustlayer can in principle undergo Kelvin-Helmholtz instabil-

ity (KHI, Johansen et al. 2006; Lee et al. 2010) but this is not
expected to be resolved in our simulations. We also note that the
pressure bump that is initially placed in our simulations is not
expected to be Rossby wave unstable when comparing the values
of the width and amplitude used here with those applied in lin-
ear stability analyses of Ono et al. (2016) for a Gaussian density
bump. That is to say that the largest amplitude bump considered
here (A = 0.4) might be marginally unstable to the RWI. How-
ever, in our simulations we do not find a qualitative difference
between the cases A = 0.2 and A = 0.4.

2.5. Hydrodynamic simulations

We solve Eqs. (1)–(4) with the multi-fluid code FARGO3D3

(Benítez-Llambay & Masset 2016; Benítez-Llambay et al. 2019).
All quantities are subjected to periodic boundary conditions
in azimuth. As for the radial and vertical boundary conditions
equilibrium values of gas density and azimuthal velocity are
extrapolated into the ghost zones, while gas radial and vertical
velocities are set to zero at the boundaries. The only difference
for the dust is that densities are subjected to symmetric boundary
conditions. Simulations are carried out in spherical coordinates
(R, ϕ, θ). The units are as follows: R0 = Ω0 = G = 1 (R0 equals
the radius r0 defined in Sect. 2). We adopt h0 = Hg0/R0 = 0.05
in all runs. The numerical grid covers 0.5 ≤ R ≤ 1.5, −3Hg ≤
z ≤ +3Hg, where z = R tan(π/2 + θ), and in 3D simulations,
0 ≤ ϕ ≤ π. The grid resolution of most of our 2D simulations
is NR × Nθ = 2160 × 480. Our 3D simulations are conducted on
a grid with NR × Nθ × Nϕ = 1088 × 256 × 512. This corresponds
to a resolution of ∼(54 × 42 × 8) H−1

g0 . While the radial and verti-
cal resolutions are high compared to previous studies, we adopt
a rather moderate azimuthal resolution for reasons of computa-
tional resources and since we expect structures to form in our
simulations to be predominantly axisymmetric or elongated in
azimuthal direction. Selected 2D simulations that are used for a
direct comparison with 3D simulations have the same radial and
vertical grid cells. The latter are carried out on a GPU cluster
which is necessary to cover a substantial domain in parameter
space while adopting a reasonable spatial resolution. All simula-
tions are run for 1000 reference orbits. A list of all conducted
2D and 3D simulations with references to the corresponding
sections is provided in Tables 1 and 2, respectively.

For analysis of our simulations, we often consider the diag-
nostic quantities defined as follows. Turbulent vertical momen-
tum transport will be quantified through the Reynolds stress

3 http://fargo.in2p3.fr

component

〈Rθϕ(θ, t)〉 = 〈sgn(z) ρgvgθ∆vgϕ〉Rϕ, (43)

where ∆vgϕ denotes the azimuthal velocity deviation from its
ground state value. Averages 〈 〉 are in all cases taken over R, ϕ
(in 3D simulations) and in addition either θ or t. The additional
factor sgn(z) is included here in order to facilitate averaging of
values above and below the mid-plane z = 0 when presenting its
time evolution, which enables a better comparison with the radial
stress component defined below. Positive values of 〈Rθϕ〉 corre-
spond to angular momentum transport away from the mid-plane.
Unless otherwise stated, the diagnostic domain of our simulation
region is 0.8 ≤ R ≤ 1.2.

In 3D simulations the radial turbulent angular momentum
transport is similarly described by

〈RRϕ(θ, t)〉 = 〈ρgvgR∆vgϕ〉Rϕ. (44)

The turbulent α-parameter (Shakura & Sunyaev 1973) is then
defined via

α(θ, t) =
〈RRϕ〉Rϕ
〈P〉Rϕ . (45)

Furthermore, the dust scale height, Hd, is computed by fitting a
Gaussian along the vertical grid z to the distribution ρd(z).

3. Results of axisymmetric 2D simulations

3.1. Dust settling in the absence of a pressure bump

The settling of dust toward the mid-plane of a VSI-turbulent PPD
in the absence of a pressure bump was studied in some detail
by Lin (2019), who employed the one-fluid model to describe a
dusty gas devised by Lin & Youdin (2017) (Sect. 2.2). Figure 2
illustrates the effect of the particle size, that is, the Stokes num-
ber τ0, as well as the background metallicity, Z, on the dust’s
ability to settle in the mid-plane of the disc. Shown is the time
evolution of (from top to bottom) dust-to-gas scale height ratio,
dust-to-gas mid-plane mass-density ratio, rms mid-plane verti-
cal dust velocity, and rms vertically averaged Reynolds stress
(as defined in Sect. 2.5), averaged here over the radial domain
R0 − H0 < R < R0 + H0. The results in the left panels of Fig. 2,
which correspond to a Stokes number of τ0 = 10−3, show a clear
systematic trend with increasing metallicity, Z. That is to say
that turbulence generated by the VSI is increasingly mitigated
with increasing amount of dust in the system. As a result, the
latter is able to settle to a layer of decreasing thickness, which is
also reflected in decreased values of the mid-plane vertical dust
velocity rms(vdz) and the vertical Reynolds stress parameter Rθφ.
It can be seen from these curves that the VSI reaches nonlin-
ear saturation after some 100 orbits, in agreement with previous
studies (Nelson et al. 2013; Richard et al. 2016; Manger & Klahr
2018). Furthermore, these results agree well with those of Lin
(2019), although the impact of dust settling appears to be slightly
weaker in our simulations. A substantially weaker trend is seen in
the right panel, which shows the effect of an increasing particle
size (τ0) for a fixed metallicity Z = 0.01.

In agreement with Lin (2019), the VSI growth rates are
largely unaffected by dust. However, there appears to be a weak
increase in the early values of rms(vdz) with increasing τ0 and
also with increasing Z, the former increase being stronger. Since
dust initially settles in such a way that the center of mass velocity
vsettle ∼ τ0 fdcs (at z ∼ Hg0), it can be expected that the collec-
tive vertical movement of dust and gas toward the mid-plane
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Table 2. All 3D simulations.

Sect. 4.1 Sect. 4.2 Sect. 5.1 Sect. 5.2 Sect. 5.3 Appendix B

Z (10−2) 0, 1, 3, 5, 10 1, 3, 5, 10 0 1, 3, 5, 10 1, 3, 5, 10 0
τ0 (10−3) 1, 5, 10 1, 4, 5, 10 – 1, 5, 10 1, 4, 5, 10 –
A 0 0.2, 0.4 0, 0.2, 0.3, 0.4 0 0.2, 0.4 0
p 2.5 2.5 2.5 2.5 2.5 –1, 0, 1, 2.5, 3.5
q 1 1 1 1 1 1
NR × Nθ × Nϕ 1088 × 256 × 512 · · · · · · · · · · · · · · ·

Notes. Only one 3D simulation presented in Sect. 4.2 adopted τ0 = 4 × 10−3 together with Z = 0.03 and A = 0.4 (Sect. 4.2). Only one 3D
simulation presented in Sect. 5.3 adopted τ0 = 4 × 10−3 together with Z = 0.03 and A = 0.2 (Sect. 5.3). Simulations with Z = 0 correspond to
dust-free simulations.

Fig. 2. Time evolution of quantities that describe the dust settling process against the emergence of VSI turbulence. From top to bottom these are the
ratio of dust-to-gas scale height, the mid-plane dust-to-gas density ratio, the root mean squared mid-plane vertical gas velocity, and the root mean
squared (rms) vertical Reynolds stress. The left panels compare different metallicities with fixed τ0 = 10−3, while the right panels compare different
Stokes numbers τ0 with Z = 0.01. The dashed red lines in the panels of rms(vgz0) are the exponential exp

(
qΩkh

)
that describes the predicted linear

growth of VSI-related velocity perturbations for an isothermal dust-free gas (Nelson et al. 2013).

serves as a seed for VSI modes; these are hence stronger ini-
tially for larger τ0 and to a lesser extent for larger ε0 [we recall
that fd = ε/(1 + ε)], explaining the observed trends. Further-
more, since vsettle roughly increases linearly with τ0, dust can
consequently settle to a thinner layer before the VSI turbulence
develops. In the thinner layer buoyancy (38) is increased so as to
stabilize the VSI which reduces stirring of the dust-layer. Outside
of the dust layer away from the mid-plane the VSI still drives tur-
bulence, albeit to a weaker extent than in the dust-free case. The

effect of particle size observed here is weaker than in the simu-
lations of Lin (2019). Thus, it appears that the overall impact of
dust in the system is stronger in the latter study. One reason might
be that the single fluid description implicitly assumes the termi-
nal velocity approximation (Youdin & Goodman 2005; Lovascio
& Paardekooper 2019) for the dust. Furthermore, the different
numerical setup used in Lin (2019) is possibly more dissipative
such that the overall level of turbulence is expected to be slightly
weaker. Nevertheless, the plots in Fig. 2 demonstrate that the
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Fig. 3. 2D simulation survey of the effect of a pressure bump on dust
evolution. Shown is the final location of εmax = (ρd/ρg)max within the
domain 0.8 ≤ R ≤ 1.2 and its value is indicated through the color-
ing. The different panels along the vertical direction compare different
metallicities, while those along the horizontal direction compare dif-
ferent Stokes numbers. Within each panel different amplitudes A are
compared. In cases where two dots are shown, the original dust ring has
produced a secondary ring through a dusty gas instability, as described
in the text.

back-reaction force from the dust onto the gas is essential for the
weakening of the VSI. The level of turbulent velocity perturba-
tions of a few percent to about 10% in the nonlinear saturation
of the VSI is consistent with the theoretical estimates by Latter
& Papaloizou (2018).

3.2. Dust settling in the presence of a pressure bump

In the following, we investigate the impact of a pressure bump
on the accumulation of dust in 2D simulations, which will be
compared to results of 3D simulations in Sect. 4. Figure 3 sum-
marizes a 2D simulation survey for the evolution of dust near a
pressure bump over 1000 orbital periods. Results are presented
for varying initial amplitude A and for different Stokes numbers,
τ0, and ground state metallicities, Z. Each solid circle represents
a single simulation in terms of the radial location of the maximal
mid-plane dust-to gas ratio 〈εmax〉t ≡ 〈max(ρd/ρg)z=0〉t averaged
over the last 100 orbits, which in all simulations with A > 0 is the
result of dust accumulation in the vicinity of the initially imposed
pressure bump. The color of each circle represents the value of
〈εmax〉t. This figure reveals several noteworthy features. First, in
the absence of a pressure bump (A = 0), we find that in order
to achieve mid-plane dust-to-gas ratios on the order of unity or
greater (and, hence, involving a triggering of the SI and possibly
planetesimal formation), a metallicity of at least Z ≈ 0.04 and
a Stokes number τ & 0.01 are necessary. On the other hand, for
non-vanishing bump amplitude this can be achieved with solar
metallicity (Z ∼ 0.01) for the same Stokes number.

For lower metallicity (Z = 0.01–0.02) we observe an increas-
ing (radial) inward shift of the radial location of 〈εmax〉t with
increasing τ0; whereas for higher metallicity (Z & 0.04), this
trend does not exist and 〈εmax〉t is in all cases located at R ∼ R0.
The inward shift at lower metallicities implies that the gas pres-
sure bump has drifted inward while dust is accumulated within
its vicinity and migrated along with the gas bump; this is con-
trary to the cases with higher metallicity, where the pressure
bump remains at its origin.

In some cases with lower metallicity and larger bump ampli-
tude (A & 0.3), the resulting dust ring becomes unstable such that
it gets disrupted (either partially or entirely) and a new dust ring
forms just inside the original one. Thus, in the case of partial dis-
ruption two dust rings remain at the end of the simulation, both
of which have resulted from the pressure bump. Such simulations
are accordingly represented by two filled circles connected by a
dotted line in Fig. 3. For large parts of the considered param-
eter space though, the simulation outcomes show only a subtle
dependence on the bump amplitude (as long as it not too small).
A similar observation was also reported by Carrera et al. (2021a).

The different outcomes of our simulations are illustrated in
Fig. 4 which displays the time evolution of ε (we plot its fourth
root for improved visibility) for three simulations with Z = 0.01,
Z = 0.03 and Z = 0.05 (in all cases A = 0.4), respectively. The
over-plotted profiles illustrate the gas pressure at different times
which are indicated by horizontal dashed lines. Since our simula-
tions are locally isothermal, these curves effectively correspond
to the evolution of the gas density. The arrows indicate dust drift
velocities as computed from (36), which, as expected describe
the movement of dusty “clumps” quite well. Interestingly, parti-
cle feedback seems to enhance the gas pressure bump for lower
background metallicities, rendering the pressure bump unstable
such that it eventually disrupts. In principle, such an enhanced
pressure bump could potentially be subjected to the RWI (Ono
et al. 2016) which, however, is suppressed due to the imposed
axisymmetry in these simulations. Disruption of the dust ring
occurs much earlier for the case with intermediate metallicity
Z = 0.03. Whether the dust ring in the case Z = 0.01 would dis-
rupt in our simulation ultimately depends on the radial size of
the domain since sufficient dust needs to be accumulated before
the region outside the ring gets depleted of dust. On the other
hand, no instability appears to occur for the case with Z = 0.05.
These findings are primarily confirmed in full 3D simulations,
as presented in Sect. 4.

3.3. Instability of dusty rings

It turns out that the drifting, as well as the splitting of dust rings,
are both the result of a violation of at least one of the Solberg–
Høiland criteria for a dusty gas (Eqs. (39), (40)). In regions of
low metallicity, the VSI is sufficiently vigorous to strongly puff
up the dust-layer such that dust adjacent to a high-density ring
possesses a substantially greater scale height than the former,
such that a relatively strong radial gradient

∣∣∣∂ fd/∂R
∣∣∣ � 0 can

occur away from the mid-plane and at the same time a small ver-
tical gradient ∂ fd/∂z ≈ 0. If ∂ fd/∂R � / � 0, accommodated
by a vertical shear around the mid-plane ∂Ω2/∂z > / < 0, this
results in a violation of (40).

VSI turbulence can also result in situations4 where ∂ fd/∂z >
0 for z > 0, which, along with κ2 > 0 leads to a violation of (40)
provided ∂ fd/∂R ≈ 0. Such situations are realized for instance

4 In what follows we restrict to values z > 0, keeping in mind that a
similar argument applies to the case z < 0.
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Fig. 4. Time evolution of the dust-to-gas ratio in the vicinity of a pressure bump with amplitude A = 0.4. Compared from left to right are different
metallicities Z = 0.01, 0.03, 0.05 with the same τ0 = 4 × 10−3. The over-plotted solid curves are the mid-plane gas pressure at times indicated
by horizontal dashed lines. The dashed curves are the initial gas pressure for comparison. The arrows indicate the direction of dust movement as
predicted by Eq. (36) and are all normalized to have the same length.

within the dust “bubble" directly inside the dust ring in the sim-
ulation with Z = 0.03. Moreover, a positive ∂ fd/∂z above the
mid-plane translates to vertical convection since then N2

z < 0
[Eq. (38)].

Furthermore, in low-metallicity regions, the VSI modes,
when attaining sufficiently large amplitude, can directly violate
the Rayleigh criterion such that Eq. (39) is violated since the first
term on the right hand side of Eq. (39) dominates the second
term practically everywhere in our simulated discs. In certain
parts of such a region, we also find (40) to be violated where
∂ fd/∂z < 0 for z > 0, which is expected near the mid-plane. The
dominance of the first term over the second in (39) is due to
the system still being rotationally supported, so that the buoy-
ancy term ∇P · ∇ fd is small in comparison. Radial profiles of
κ2 appear noisy on the grid level and they vary in time. It is not
unexpected that κ2 can drop to negative values. The VSI oper-
ates on small radial length scales and the linear modes are also
nonlinear solutions, at least in the incompressible limit (Latter
& Papaloizou 2018). Therefore, we can assume that linear VSI
modes are capable of growing to high amplitudes. Specifically
the vertical component of vorticity, which amounts to κ2/2Ω in
axisymmetric models. Therefore, this quantity can grow until
the Rayleigh criterion is violated. In 3D simulations, however,
linear modes will undergo KHI or RWI and the flow devel-
ops non-axisymmetry before the Rayleigh criterion is actually
violated.

Figure 5 illustrates the unstable behavior of dust rings in the
same simulations as those shown in Fig. 4. The upper panels dis-
play the dust-to-gas ratios for a time near 450 orbits, which is
just prior to the dust ring in the simulation with Z = 0.03 being
disrupted at the expense of a new dust ring, which subsequently
drifts inward. This is also when the dust ring in the simula-
tion with Z = 0.01 starts to drift inward. The remaining panels
from top to bottom are the two time-averaged (over the range

350-450 orbits) Solberg–Høiland expressions, namely, 〈SH1〉,
〈SH2〉, corresponding to Eqs. (39) and (40), and the rms aver-
aged Reynolds stress rms(Rθϕ), corresponding to Eq. (43). What
these plots mainly show is that the Solberg–Høiland criteria
are violated in various places, mostly away from the mid-plane.
However, both stability criteria are most severely violated in the
puffed up dust-layers adjacent to the dust ring of each simula-
tion. In the unstable regions just inside of the dust rings for the
cases Z = 0.01 and Z = 0.03 we find a substantially increased
Reynolds stress Rθϕ and, hence, an increased vertical angular
momentum transport (away from the mid-plane). We expect this
to be responsible for the inward drift or disruption of the dust
rings in these simulations.

3.4. Discussion

Previous works investigating the evolution of dust in the vicin-
ity of a pressure bump (Taki et al. 2016; Onishi & Sekiya 2017;
Huang et al. 2020; Carrera et al. 2021a) have not reported any
unstable behavior on the part of dust rings that formed at a pres-
sure bump, as described in the previous sections. Although Taki
et al. (2016) found that the pressure bump gets destroyed by the
particle feedback within hundreds of orbital periods without suf-
ficient reforcing, this turned out to be caused by the neglect of
vertical stellar gravity and, hence, dust sedimentation in the mid-
plane (Onishi & Sekiya 2017). Also, for the parameters used
by Taki et al. (2016) (Z = 0.1, τ0 = 1) or Huang et al. (2020)
(Z = 0.05, τ0 ∼ 0.25), we do not expect drifting or disruption in
our simulations to occur as well, based on Fig. 3.

Huang et al. (2020) found an instability of dust rings with
dust-to-gas ratios of order unity, but their simulations were in 2D
(vertically integrated) and, thus, omitting the vertical disc strat-
ification as well. Furthermore, the instability found by Huang
et al. (2020) does, in principle, only require a dust ring with
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Fig. 5. Meridional cuts of (from top to bottom) the dust-to-gas ratio at 450 orbits, the averaged Solberg–Høiland expressions (39), (40) (the left
hand side terms) and root mean squared vertical Reynolds stress. Averages are taken over the time 350–450 orbits. In the panels 〈SH1〉 and 〈SH2〉,
negative values are indicated by a black color. These plots compare the same simulations as in Fig. 4 and illustrate the emergence of a dusty gas
instability through a violation of the Solberg–Høiland criteria.

sufficiently sharp edges and a dust-to-gas ratio on the order of
unity, such that gas within the dust ring is forced to attain Kep-
lerian velocity; these authors speculate that the edges of the ring
could be unstable to the RWI due to a sharp drop of the vorticity
ωz, which is not captured in our 2D axisymmetric simulations.
Also, our finding that the simulation with Z = 0.05 does not
show unstable behaviour despite having developed a dense sharp
dust ring would thus be hard to explain.

We have verified that neither drifting nor disruption of dust
rings occurs in 1D radial simulations or 2D vertically unstrati-
fied, axisymmetric simulations. Furthermore, we ran simulations
with reduced temperature gradient (i.e., smaller values of |q|) and
found that the unstable behavior diminishes, with the dust rings
behaving essentially laminar, with decreasing |q|. These find-
ings, which are presented in Appendix A, support our picture
of a dusty gas instability that is triggered by the VSI turbu-
lent motions and which lead to the phenomena described above.
Indeed, the VSI does not occur in an unstratified disc as there
is no vertical shear. Also a reduction of |q| weakens the vertical
shear and, hence, the VSI.

4. Results of 3D simulations: Turbulent properties
and dust rings

In this section, we present the results of 3D simulations where
the main focus lies on the collection of dust into rings or vortices
(discussed in Sects. 4.2 and 5, respectively). Before turning to
these topics, we first present a brief investigation of the turbu-
lent properties of the dusty gas disc. Where possible, we draw
comparisons with our 2D simulations.

4.1. Turbulent flow properties

We start by comparing the strength of VSI turbulence as it occurs
in 3D and 2D simulations without an initial pressure bump.
Figure 6 shows the time evolution of the spatially averaged
vertical Reynolds stress (43), which represents a running time-
average to smooth out strong fluctuations (upper panels), as well
as its time-averaged vertical profile (lower panels). Time aver-
ages have in the lower panel been taken over the last 400 orbits.
Overall, turbulence takes comparable magnitudes in 2D and 3D
simulations. The influence of dust on the strength of turbulence
appears to be complicated. At low metallicity and a small Stokes
number, the presence of dust appears to result in additional stir-
ring of the gas such that the stress Rθϕ is enhanced as compared
to the dust free case. This applies to both 2D and 3D simu-
lations, although the effect is stronger in 2D. We conjecture
that this increased turbulent activity in the low metallicity and
Stokes number cases shares its origin with the dusty gas insta-
bility discussed in Sect. 3.3. This is illustrated in Fig. 7, where
the plots correspond to 900 orbits. In the plots of the dust-to-
gas ratios, small-scale vortices are visible along the edges of
the strongly corrugated dust-layers in the lower metallicity case.
The second row displays, similarly as in Fig. 5 the time-averaged
(900–1000 orbits) expression 〈SH2〉, corresponding to (40). The
third row represents the time-average of the gas-vorticity com-
ponent ωϕ ≡ eϕ ·

(
∇ × ug

)
. The last two rows show the radial and

vertical gradients of the dust fraction fd. This figure underlines
that increased vorticity production stems mainly from radial
structuring and to a smaller extent from vertical structuring of
the dust-layer, which we verified by inspection of the two terms
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Fig. 6. Comparison of the vertical Reynolds stress (43) in 2D and 3D simulations for different metallicities, Z, and Stokes numbers, τ0. Upper
panels: running time-averages (spatially averaged over the entire diagnostic domain 0.8 ≤ R ≤ 1.2), while the lower panels display the time-
averaged (over the last 400 orbits) vertical profiles. The dashed curve is in all panels for 2D and 3D the same, respectively. The horizontal dotted
line indicates “zero”, such that positive and negative values correspond to angular momentum transport away from the mid-plane and towards the
mid-pane, respectively.

within the brackets on the right hand side of (40). This structur-
ing of the dust-layer is caused by corrugation (an idea first put
forward by Lorén-Aguilar & Bate 2015). In principle, since there
are locations where ∂ fd/∂z > 0 for z > 0 – and hence N2

z < 0 –
the condition for vertical convection is locally fulfilled at these
locations at some time. It is unclear if the latter has a notable
influence on the disc turbulence. The figure also shows how the
vertical gradient ∂ fd/∂z has a strongly stabilizing effect in the
case Z = 0.05 that overcompensates for the potentially destabi-
lizing effects of the radial gradient ∂ fd/∂R. Thus, at a greater
metallicity, dust sufficiently weakens the VSI such that dust can
settle onto a thinner and denser layer that is less prone to corru-
gation motions. This leads to a strongly reduced production of
vorticity, ωϕ, around the mid-plane. Subsequently, the Reynolds
stresses fall below the dust-free values. In principle an increased
vorticity could also be due to KHI as adjacent dusty gas layers
shear past each other in the vertical direction due to corruga-
tion. However, if KHI were the reason for the observed increased
vorticity and Reynolds stress we would expect this effect to be
strongest in the dust-free case since the KHI does not rely on the
presence of dust and the VSI is causing the corrugation which
would be the origin of the KHI. The observed strong increase in
Rθϕ when adding small amounts of dust would not be expected
in this scenario. Also the finding that the Solberg–Høiland cri-
teria are actually violated in the corrugated dusty layer points
to the dusty gas instability for being the origin of the increased
hydrodynamic activity. Moreover, our resolution is likely not suf-
ficiently high to resolve such parasitic KHI modes (C. Cui, priv.
comm.).

Interestingly, Lorén-Aguilar & Bate (2015), who conducted
smoothed particle hydrodynamics simulations of a PPD with
very similar setup (3D, locally isothermal) found a similar corru-
gation of the mid-plane dust-layer. However, they concluded this
to be the result of a baroclinic instability that arises in response to
a violation of Eq. (40), which they defined for a pure gas with an
entropy S ∼ log

(
P/ργg

)
– in contrast to our definition expressed

via Eq. (16), which is also that of Lin & Youdin (2017) and where
ρg is replaced by the total density ρ. This subtle difference in the
definition of S leads to a change of sign in the criterion for the
onset of vertical convection, namely, ∂ fd/∂z > 0 for z > 0 in con-
trast to Eq. (7) of Lorén-Aguilar & Bate (2015). From the results

presented in Fig. 7, we conclude that the criterion adopted here
is adequate since the settled dust-layer itself is stable, whereas
regions above and below it are marginally unstable. Corrugation
of the dust-layer in our simulations is a direct result of velocity
perturbations of VSI modes and it is the corrugation that facili-
tates the conditions for a violation the second Solberg–Høiland
criterion or a locally unstable vertical entropy stratification. Fur-
thermore, it remains questionable that the VSI did not develop
in the simulations of Lorén-Aguilar & Bate (2015) despite the
required physical conditions being fulfilled.

To further illustrate the impact of dust on the turbulent prop-
erties of the disc, we compare in Fig. 8 the vertical dependence
of the time and radially and azimuthally averaged radial mass
flow and radial velocity of gas and dust in 2D and 3D simula-
tions, respectively. At low metallicity (lower panels in all cases),
we recover the results of Stoll & Kley (2016) and Manger &
Klahr (2018), namely, that gas flows inward near the disc’s mid-
plane; whereas at larger heights, it flows outward. A similar flow
pattern is also found in our 2D simulations, which is, nonethe-
less, of a slightly different magnitude that may in some cases
exceed the 3D values. The observation that inflow velocities near
the mid-plane for low metallicities in 2D and 3D simulations
take comparable values most likely stems from the anisotropic
(Reynolds) stress generated by the VSI and that the most promi-
nent perturbations excited by the VSI are vertically global modes
of relatively short radial wavelength .Hg. This anisotropy was
studied by Stoll et al. (2017), who attempted to model the turbu-
lent accretion flow induced by the VSI in 3D simulations by a
laminar viscous accretion flow in 2D axisymmetric simulations
and found that the vertical viscosity coefficient (characterizing
Rθϕ) in their models needed to be 650 times larger than the
radial component (characterizing Rrϕ) in order to set the verti-
cal structure of the accretion flow pattern in the two simulations
in agreement. In passing, we note that we obtained a total gas
accretion rate of ∼−1.2 × 10−5 Σg0ΩK for the dust-free 3D simu-
lation by vertically integrating the mass flow profile shown in the
bottom left panel of Fig. 8. This value seems consistent with the
value ∼−2.4 × 10−5 Σg0ΩK reported by Manger & Klahr (2018),
who adopted a larger disc aspect ratio of h = 0.1. However, a
quantitative study of accretion rates requires carefully defined
boundary conditions and is not be considered here.
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Fig. 7. Illustration of the origin of the increased vertical Reynolds stress Rθϕ in 2D simulations with small Z and τ0 = 10−3 compared to the
dust-free simulation as seen in Fig. 6. In the left panels, corresponding to Z = 0.01, the VSI strongly corrugates the dust-layer which results in
non-vanishing radial and vertical gradients of fd which result in a violation of Eq. (40), which is indicated by black colors in the plots labeled
〈SH2〉. The largest contribution to the violation is by radial gradients. The right panels correspond to Z = 0.05 where the VSI is too much weakened
to cause significant corrugation.

Many aspects of the profiles plotted in Fig. 8 can be under-
stood by considering basic aspects of dust-gas drag (Sect. 2.3).
Considering the 3D results for the time being, for small Stokes
numbers τ0 = 10−3 dust and gas averaged velocities are essen-
tially equivalent, regardless of Z, which is also in agreement with
results in Fig. 17 of Stoll et al. (2017). For larger τ0, dust veloci-
ties become increasingly negative and gas velocities increasingly
positive, which is also expected. Moreover, In the dense dusty
mid-plane layer that forms in simulations with higher values of
τ0 and Z, radial drift velocities become small as ρd > ρg. How-
ever, with increasing metallicity and Stokes numbers the gas and
dust radial velocity profiles change substantially. For instance,
for Z = 0.1 and τ0 = 10−3 (and actually even for Z = 0.05,which,
however, is not shown here) or for Z = 0.03 and τ0 = 5 × 10−3

– the profiles have changed in such a way that material is flow-
ing inward away from the mid-plane while it flows outward in
narrow regions close to the mid-plane. Interestingly this flow

profile resembles to some extent the standard laminar isotropic
α-viscosity case (e.g., Takeuchi & Lin 2002). The reason for this
change is due to different VSI modes being dominant in the dif-
ferent cases. This is illustrated for the examples Z = 0.01, 0.1
with τ0 = 10−3 in Fig. 9 and can also be seen in the vertical
profiles of the Reynolds stress for these parameters in Fig. 6. At
low metallicity and for increasing Stokes number, we find that
the radial mass fluxes qualitatively agree with those of Stoll &
Kley (2016) (their Fig. 18). Departures occur for the radial dust
velocities at larger Stokes numbers, where they found that the
radial dust velocity away from the mid-plane is always directed
outward and larger in magnitude than the radial gas velocities.
In contrast, we find that the dust velocities become negative for
larger Stokes numbers, as mentioned above. These discrepancies
with Stoll & Kley (2016) are most likely due to the neglect of
particle feedback in their simulations. Moreover, they added par-
ticles at a time at which the VSI had reached a quasi-steady state
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Fig. 8. Vertical profiles of the averaged radial dust and gas velocities (upper three rows) and the dust and gas mass flows (lower three rows) in 3D
(left panels) and 2D (right panels) simulations. The Stokes number τ0 increases from left to right while Z increases from the lower to upper panels.
For comparison, in the panels corresponding to Z = 0.01 and τ0 = 10−3 we additionally plot the result of a dust-free simulation. Averages have
been taken over the last 400 orbits and over 0.8 ≤ R ≤ 1.2. The dust mass flows are additionally scaled with a factor 1/ε0 as compared to the gas
mass flows. The horizontal axis displays −2Hg ≤ z ≤ 2Hg in all panels.

whereas we simulate both dust and gas coevally. However, the
overall qualitative agreement between 2D and 3D simulations
lends additional credibility to our results. Comparing averaged
velocities with averaged mass fluxes for the gas is generally
straight forward. The gas is nearly incompressible such that its
averaged mass flow is essentially the averaged gas velocity mul-
tiplied with the initial Gaussian density profile. This does not,
however, apply to the dust whose mid-plane density can exhibit
complex time variations owing to corrugation. A detailed anal-
ysis of the dust mass flow profiles is beyond the scope of this
paper.

Figure 10 compares the dust settling process in 2D and 3D
simulations with metallicities Z = 0.01–0.1 and Stokes num-
bers τ = 10−3–10−2. Shown are the dust-to-gas scale height ratio
and the mid-plane dust-to-gas density ratio. Overall, the results
agree quite well. For both the 2D and 3D simulations, the aver-
ages are taken within a radial domain of 0.8 ≤ R ≤ 1.2. For the

3D simulations an additional averaging over azimuth has been
performed. Apart from the smallest metallicity and Stokes num-
ber cases, dust settling is somewhat stronger in 2D simulations,
which is expected from the results in Fig. 6. All simulations
shown were run with the same radial and vertical resolution
and domain sizes. For the 3D simulation with Z = 0.01 and
τ = 10−2, the disc region under consideration already becomes
significantly depleted of dust by the end of the simulation. This
is in part due to vortices that form and collect inward drifting
dust and eventually leave the considered disc region. This will
be discussed in more detail in Sect. 5.

Furthermore, Fig. 11 illustrates the effect of dust on the VSI’s
ability to transport angular momentum in radial direction in 3D
simulations. Shown is the time evolution, which again is in the
form of a running time average, as well as time-averaged vertical
profiles of the α-viscosity parameter (45). The averages are taken
in the same fashion as in Fig. 6. In contrast to the behavior of Rθϕ
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Fig. 9. Meridional plots of the time-averaged Reynolds stress 〈Rθϕ〉t over the last 400 orbits corresponding to the simulations with Z = 0.01
and Z = 0.1 with τ0 = 10−3 in Fig. 8. Bright (dark) colors represent positive (negative) stress-values. The arrows indicate the direction of the
corresponding time-averaged dust velocity. All arrows are normalized to have the same length. The different vertical profiles of 〈Rθϕ〉t are the
reason for the different vertical velocity profiles seen in Fig. 8.

Fig. 10. Comparison of the dust settling process in 2D and 3D simulations for different metallicities Z and Stokes numbers τ0. Shown are the
ratios of the dust and gas scale heights (upper panels) and the mid-plane dust and gas densities. All quantities are averaged in radius and in 3D
simulations also in ϕ.

(Fig. 6) which describes vertical angular momentum transport, α
decreases steadily with increasing metallicity, even at low metal-
licity. The reason is that the main driver of an increased Rθϕ is
corrugation of the dust-layer which can only occur in vertical
direction. The values α . 10−3 extracted from our dust-free ref-
erence simulation are in good agreement with those of Nelson
et al. (2013), but almost a factor 10 larger than those reported
by Manger et al. (2020) for the same disc aspect ratio h = 0.05.
Several other studies report smaller values (Stoll & Kley 2016;
Pfeil & Klahr 2021; Flock et al. 2020), mainly due to their adop-
tion of a more realistic equation of state, improved by at least a
finite cooling time (compared to the isothermal approximation),
which is known to mitigate the VSI (Lin & Youdin 2015). The
most likely reason for the difference to the values of Manger et al.
(2020) is the higher radial and vertical grid resolution adopted in
our simulations. Furthermore, Manger et al. (2020) found that
the resolution in azimuthal direction has a subdominant effect
on the VSI activity, in contrary to the strong dependence on the
azimuthal domain size (Manger & Klahr 2018).

4.2. Dust rings

One class of prominent substructures in PPDs that ALMA has
revealed in recent years are rings and gaps, visible in the dust
mm continuum or spectral line emission (e.g., van der Marel
et al. 2013, 2021; ALMA Partnership 2015; Andrews 2020).
A fraction of the well-observed dust rings exhibit more or less
strong (typically crescent shaped) non-axisymmetries whose ori-
gin is still topic of debate. One generally assumes that there
are two main mechanisms which can generate these struc-
tures. These are so-called “horseshoes,” which constitute non-
axisymmetric gas enhancements in discs just outside the inner
cavity that has been cleared by a stellar binary (Ragusa et al.
2017) or vortices generated at a pressure bump adjacent to a gap
that is assumed to be created by a planet of sufficiently high
mass (e.g., Zhu & Stone 2014). The latter mechanism is the
one that is specifically relevant to this work and here we wish
to investigate whether (and under what conditions) dust rings
that form at a pressure bump in an VSI turbulent disc can attain
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Fig. 11. α-viscosity parameter (45) as measured in 3D simulations for different metallicities and Stokes numbers. The dotted curves correspond
to a dust-free simulation. The upper panels display the running time-average of the spatially averaged value while the lower panels show vertical
profiles, averaged in time.

Fig. 12. Snap shots of dust-to-gas density ratio at late times (800−1000 orbits) in simulations including a pressure bump with amplitude A = 0.2
and with Stokes number τ0 = 10−3. The dashed and dotted curves represent the initial and final mid-plane gas pressure profiles, respectively.

dust to gas ratios that could result in planetesimal formation and,
second, whether dust rings can be subjected to any persistent
non-axisymmetries.

Figures 12–15 show dust rings that formed in 3D simulations
in response to an initially seeded pressure bump, for different
background metallicities Z, Stokes numbers (τ0 = 0.001 and
τ0 = 0.01) and bump amplitudes (A = 0.2 and A = 0.4), respec-
tively. The dotted and dashed curves illustrate the azimuthally
averaged final and initial gas pressure profile, respectively. We
verified by means of test simulations that the pressure bumps
in these simulations are not subject to the RWI5. It should be
kept in mind that our resolution is not sufficient to resolve small-
scale instabilities such as the SI, which may disrupt the dust

5 In these test simulations we adopted a very small temperature
gradient q→ 0 such that the VSI was extinguished.

rings, although the SI might be less efficient in a turbulent disc.
That being said, what Figs. 12–15 reveal is that an increase of
the parameters Z and τ0 (and to some extent also A) results
in a transition from a preference to form dusty vortices toward
a preference to form dusty rings. Generally speaking, we find
an increasing axisymmetry of formed dust enhancements when
increasing these parameters. We hypothesize that the reason for
this transition is the same as that for the increased stability of
dust rings found in our 2D simulations when increasing the same
parameters, since essentially this weakens the VSI. When com-
paring the results presented in this section with those of our
2D simulations which are summarized in Fig. 3, we find many
similarities. For instance, the cases with the smallest Stokes
number τ0 = 10−3 and lower metallicity Z . 0.03 are lack-
ing any notable dust enhancements at the pressure bump site,
although we observe the formation of weak dusty vortices in 3D.
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Fig. 13. Snap shots of dust-to-gas density ratio at late times (800−1000 orbits) in simulations including a pressure bump with amplitude A = 0.2
and with Stokes number τ0 = 10−2. The dashed and dotted curves represent the initial and final mid-plane gas pressure profiles, respectively.

Fig. 14. Snap shots of dust-to-gas density ratio at late times (800−1000 orbits) in simulations including a pressure bump with amplitude A = 0.4
and with Stokes number τ0 = 10−3. The dashed and dotted curves represent the initial and final mid-plane gas pressure profiles, respectively.

Furthermore, in Sect. 3.2 we discussed the occurrence of a dusty
gas instability and how it results in disruption or inward drift of
dust rings. The parameter regime within which this happens can
be directly determined from Fig. 3. Indeed, Figs. 12–15 show
that also in 3D simulations dust rings undergo inward drift and
the magnitude of this drift is larger for larger (smaller) Stokes
number (metallicity). For the purposes of illustration, Fig. 16
compares the radial locations of dust rings as observed in 2D and
3D simulations for two metallicities (Z = 0.01, 0.03) and bump

amplitudes (A = 0.2, 0.4) and Stokes number τ0 = 10−2. For the
case Z = 0.01, dust rings in 2D simulations (dashed curves) drift
slightly faster than in 3D simulations (solid curves), whereas the
opposite is the case for Z = 0.03. The behavior for Z = 0.01
can be explained considering that the dusty gas instability which
causes the inward drift is somewhat stronger in 2D than in 3D (cf.
Fig. 6). On the other hand, the negligible inward drift in the 2D
simulations with Z = 0.03 is a consequence of the much larger
value of ε attained in the corresponding dust rings (cf. Fig. 3).
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Fig. 15. Snap shots of dust-to-gas density ratio at late times (800–1000 orbits) in simulations including a pressure bump with amplitude A = 0.4
and with Stokes number τ0 = 10−2. The dashed and dotted curves represent the initial and final mid-plane gas pressure profiles, respectively.

For the same reason (i.e., increased ε) drift speeds for the cases
with A = 0.4 are generally smaller than for the corresponding
cases with A = 0.2. That being said, drift speeds of dust rings
according to Fig. 16 can get as fast as ∼0.2Hg0/(100 orbits) in 3D
simulations and ∼0.3Hg0/(100 orbits) in 2D simulations.

Moreover, the dust rings formed in simulations with Z ≤ 0.03
are subject to strong turbulent distortions, whereas those cor-
responding to larger Z are nearly axisymmetric. In the former
cases, the gas pressure bump is dragged along with the dust ring
and in some cases even amplified, similar as in corresponding 2D
simulations (Fig. 4). Also one can clearly see strong corrugation
of the dust-layer adjacent to the ring for these cases in the upper
panels which show meridional contour plots. This corrugation
facilitates the dusty gas instability discussed in Sect. 3.3.

One difference is that in 3D simulations instability leads
to vortex formation, which is suppressed in 2D axisymmetric
simulations. An example for the evolution of an unstable dust
ring in a 3D simulation is presented in Fig. 17. In this case
the dust ring continuously produces new vortices that split off
and drift inward. The driving force of this unstable behavior is,
similarly to the 2D simulations, the VSI. The attained dust-to-
gas density ratios in 3D dust rings are not nearly as high as in
2D, which is due to planar turbulent diffusion generated by the
VSI and quantified through α (as discussed in Sect. 4.1) in 3D
simulations.

5. Results of 3D simulations: Vortices

In this section, we discuss the appearance of vortices in 3D sim-
ulations and their capability to concentrate dust and hence assist
in planetesimal formation.

5.1. Dust-free simulations

Figure 18 shows the mid-plane vorticity (42) after around 600
reference orbits in 3D dust-free simulations with an initially

seeded pressure bump of varying amplitude A. The lower-left
panel corresponds to the run presented in the lower left frame
of Fig. 8 in Manger et al. (2020) and we find good agreement
between the sizes ∆R ∼ Hg0 and aspect ratios R∆ϕ/∆R ∼ 8–10
of the largest vortices appearing in these simulations. Moreover,
the size of these vortices appears to increase with increasing
bump amplitude A. They appear after ∼200–400 orbits, where
earlier times correspond to larger values of A. Numerous small-
scale vortices are present as well. These are short-lived and
cannot be tracked in our simulations since our time resolution
is ∼50 orbits. Similarly small vortices have been found in other
studies (Richard et al. 2016; Manger & Klahr 2018) and their
survival times were estimated to be several orbits. Although it is
not entirely clear if the correspondence between vortex size and
bump amplitude is physical or a coincidental outcome of our
simulations, a possible explanation is that large vortices grow
by absorption of small-scale vortices and that this can happen
more efficiently in the vicinity of a pressure bump. Paardekooper
et al. (2010) have shown that in razor-thin disc models, vor-
tices undergo migration by emitting sound waves inwards and
outwards in an asymmetrical fashion that is similar (but not iden-
tical) to planets embedded in a disc. The direction of migration
is related to the background surface density gradient, such that
vortices migrate toward regions of larger surface density. This
should also imply migration towards the mild pressure maximum
corresponding to a large vortex. However, since the small-scale
vortices have a small vertical extent of considerably less than one
scale height (Richard et al. 2016), the vertically-averaged results
of Paardekooper et al. (2010) potentially do not apply to these
vortices. It is therefore not clear whether or not they can migrate
over any significant distance and be absorbed by a large vortex
before they dissipate. On the other hand, the migration and also
merging of larger vortices is directly observed in our simulations
– similarly to what was reported by Manger et al. (2020).

Figure 19 shows the time evolution of the radial gas den-
sity profile (azimuthally averaged) at the mid-plane for the same
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Fig. 16. Radial locations of dust rings in 3D (solid curves) and 2D
(dashed curves) simulations for metallicities Z = 0.01 (black curves),
and Z = 0.03 (red curves) and bump amplitudes A = 0.2 (thin curves)
and A = 0.4 (thick curves). The locations correspond to the maximum
value of ε at each time. The sporadic reversals of the drift direction are
due to turbulent fluctuations of the dust density within the rings. The
3D simulations are the same as in Figs. 13 and 15. The 2D simulations
are those shown in Fig. 3.

simulations as in Fig. 18. The dashed vertical lines indicate the
radial location of the large vortex for the three latest times. In
all simulations the vortex survives for hundreds of orbits and
migrates inwards. This is in agreement with the results reported
by Manger & Klahr (2018), Manger et al. (2020) and also
Pfeil & Klahr (2021). In addition, the density bump smears out
through turbulent diffusion and redistribution of mass within the
disc in response to the (turbulent) angular momentum transport
generated by the VSI, an aspect recently considered by Manger
et al. (2021). Indeed, we find a pileup of mass around R ∼ 0.6R0
(outside the diagnostic domain) in a similar manner as shown in
Fig. 9 (bottom left panel) of Manger et al. (2021).

Apart from the size of the vortices, the results in Fig. 19
do not provide evidence that the pressure bump has an effect
on migration of large vortices or that it is a preferred location
for the formation of the latter, since the vortex in the simula-
tion with A = 0 forms at a very similar radius as in all other
simulations with A > 0. Nevertheless, we hypothesize that large
vortices result from merging of smaller vortices and that this
is more likely to occur if vortex radial migration is mitigated.
The latter is expected to depend on the surface density gradi-
ent (Paardekooper et al. 2010) and we therefore expect a more
efficient growth of vortices at a pressure bump. To further test
this hypothesis we ran additional simulations with different sur-
face density slopes s (and hence different mid-plane gas density

Fig. 17. Time evolution of an unstable dust ring in a 3D simulation
with parameters τ0 = 4 × 10−3,Z = 0.03, and A = 0.4. The dashed and
solid curves are the initial and current mid-plane gas pressure profile,
respectively. One can clearly see an amplification of the gas pressure
bump and unstable behavior of the dust ring, as it develops strong
non-axisymmetries and splits of a vortex which subsequently migrates
inward.

slopes p). The results of these simulations, which are presented
in Appendix B, show that a flatter mid-plane density profile leads
to slower migration speeds and larger vortices and support our
hypothesis.

5.2. Dusty simulations without a pressure bump

Our dusty 3D simulations reveal that large (∆R ∼ Hg0) vortices
collect dust and survive for typically hundreds of orbital periods,
which is similar to the survival time of pure gas vortices dis-
cussed above. Within a simulation time of 1000 reference orbits,
we find large, long-lived vortices only for metallicities Z . 0.03
and – if Z = 0.03 – only for small Stokes numbers τ0 ∼ 10−3.
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Fig. 18. Mid-plane plots of the z-component of the gas vorticity Eq. (42)
after 540 orbits in dust-free simulations with an initial pressure bump of
varying amplitude A.

Fig. 19. Evolution of the mid-plane gas density for dust-free simulations
with an initial pressure bump of varying amplitude A. The dashed lines
indicate the location of the large vortex in these simulations at the three
latest times.

We generally do not observe larger, long-lived vortices in sim-
ulations with Z ≥ 0.05. The exception is in a simulation with
Z = 0.05 and τ0 = 10−3, where at late simulation times past
1000 orbits we find the formation of a large vortex, but its dust
content is negligible compared to ambient turbulent dust lanes
that are present in the simulation region as well. We attribute the
absence of long-lived vortices at high metallicities and Stokes
numbers to the corresponding weakening of the VSI by dust

feedback and its ability to form vortices. Therefore, we also
expect weaker vortensity perturbations in simulations with larger
Z, which is illustrated in Fig. 20, where the vortensity L is given
by Eq. (42).

None of the vortices that formed in our simulations without
an initial pressure bump attained dust-to-gas ratios of unity or
greater. The largest value we find is ε ∼ 0.7 in a vortex by the end
of the simulation with Z = 0.01 and τ0 = 10−2. This is in strong
contrast to the values of ε attained in vortices that formed in the
3D shearing box simulations of the COS by Raettig et al. (2021),
where even for an initial value of Z ∼ 10−4, vortices formed
rapidly and after tens of orbits values of ε ∼ 10 were reached
within the vortices. The main reason for these differences is cer-
tainly the much weaker vertical turbulent velocities generated by
the COS (∼10–100 times smaller than for the VSI) and perhaps
to some extent the larger Stokes numbers τ0 ≥ 5 × 10−2 con-
sidered in that work. That being said, we cannot rule out that
larger dust-to-gas ratios could be obtained with Stokes numbers
>10−2, a larger radial domain, or both; the latter of which would
supply more dust for trapping. (An inflow outer boundary condi-
tion would have the same effect.) Because of dust drift, we can
already find significant dust depletion in the diagnostic domain
0.8 ≤ R ≤ 1.2 by the end of the aforementioned simulation with
τ0 = 10−2, such that the collection of dust in the vortex is already
hampered. This effect will be even more severe in simulations
with larger Stokes numbers such that these would either require
a substantially larger radial domain size or inflow of dust at the
outer boundary.

5.3. Dusty simulations including a pressure bump

In the presence of dust, the evolution of a pressure bump can
differ significantly from the dust-free evolution discussed in
Sect. 5.1, which is illustrated in Fig. 21. In Sect. 4.2, we show that
pressure bumps give rise to the formation of dust rings, vortices,
or a combination of both. While pressure bumps are expected
to either trap dust or cause “traffic jams” to produce dust rings
(see Sect. 2.3), the frequent formation of vortices at the pres-
sure bump is less obvious based on above dust-free results in
Sect. 5.1 (we recall that our initial pressure bumps are stable
against the vortex-forming RWI.) However, in Sect. 3.3 we found
that dust rings at low and intermediate metallicities are locations
of increased hydrodynamic activity due to violations of one of
the Solberg–Høiland criteria (Eqs. (39)–(40)), which are associ-
ated with corrugations of the dust-layer by the VSI. In 3D, we
can therefore expect such dust rings to be preferred locations for
the formation of vortices, for a given range of dust-parameters.
Similarly to the 2D simulations shown in Fig. 4, such unstable
dust rings also go along with an increased gas density such that
the pressure bump is effectively being amplified, which is clearly
seen in the lower right and upper left panel of Fig. 21. Within this
scenario, it is also consistent that no vortices form at dust rings
in simulations with sufficiently large Z & 0.05, due to effective
weakening of the VSI by dusty buoyancy. This can clearly be
seen when comparing Fig. 5 with Fig. 14.

Examples of dusty vortices that form at a pressure bump are
found in Figs. 14, 17, and below. The latter figure also demon-
strates that dust is more settled in the vortex core, which is clearly
seen in the contour plot of scale height ratio, Hd/Hg. Unlike
bump-free simulations, for moderate initial pressure bumps (A =
0.2–0.4), we do find vortices that collect sufficient amounts of
dust such that the SI should be triggered within these if it were
to be resolved. Figure 22 illustrates the evolution of large, long-
lived vortices that form at a pressure bump with an amplitude
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Fig. 20. Radial profiles (azimuthally averaged) of the vortensity (41) at different times in simulations with Stokes number τ0 = 10−3 and different
metallicities Z. The occurrence of sharp peaks in this quantity suggests that the smallest scale structures appearing in our simulations are most
likely not sufficiently resolved in order to properly compute numerical derivatives contained in the quantity L for all grid points. This should,
however, not affect the qualitative interpretation of the plots.

Fig. 21. Evolution of the mid-plane gas density in dusty simulations
with different metallicity Z, Stokes number τ0 and pressure bump
amplitude A.

A = 0.46 in simulations with metallicity Z = 0.01 and Stokes

6 A similar result is obtained with A = 0.2.

numbers τ0 = 10−3 and τ0 = 10−2, respectively. These vor-
tices survive a considerable time span of about 500 orbits. For
τ0 = 10−3, the vortex core does not attain unity dust-to-gas ratios
within the simulation timescale and steadily migrates inward
with a rate of ∼0.4Hg0/(100 orbits), comparable to that of dust-
free vortices (cf. Appendix B), until it eventually dissolves in the
background flow.

On the other hand, the vortex formed in the simulation with
τ0 = 10−2 reaches a dust-to-gas ratio that is at unity at about
200 orbits following its formation and a maximum value of
almost 4 after 400 orbits. Therefore, it can be expected that the
SI would be triggered with higher grid resolutions. Due to the
larger dust-to-gas ratio the inward drift of the vortex is substan-
tially slower in this case. Furthermore, the shape of the dust
distribution within the vortex is more elongated in the case of
larger Stokes number (or equivalently, larger particle size). By
the end of the simulation the vortex dissolves into a turbulent,
non-axisymmetric circumferential dust ring. A similar trend in
the distribution of dust particles of different sizes in vortices
was reported by Crnkovic-Rubsamen et al. (2015) and Surville
& Mayer (2019) for vortices in 2D shearing sheet simulations.

5.4. Discussion

The small-scale, compact vortices found in our simulations
and those of Richard et al. (2016) and Manger et al. (2020)
are assumed to be the result of parasitic KHI that inflict the
VSI modes, thereby controlling their nonlinear saturation ampli-
tudes (Latter & Papaloizou 2018). The rapid dissipation of these
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Fig. 22. Example evolution of large dusty vortices that formed at a pres-
sure bump (A = 0.4) in 3D simulations with metallicity Z = 0.01 and
Stokes numbers τ0 = 10−3 (upper panels) and τ0 = 10−2 (lower panels).
The contour plots show the dust-to-gas ratio. The insert plot displays
the vortex location (black curve) and its maximum dust-to-gas ratio (red
curve) as functions of time.

vortices is likely caused by the elliptic instability (Lesur &
Papaloizou 2009; Railton & Papaloizou 2014), which is more
vigorous for small vortex aspect-ratios. Larger vortices with
aspect ratios of around 5 or larger do not fit in the scenario
just described. First of all, their properties are different from
the vortices that were described in Latter & Papaloizou (2018).
For instance, the large scale vortices found here are vertically
extended structures where the vorticity perturbation extends over
more than one gas scale height, which is illustrated in Fig. 23.

Fig. 23. Detailed view of the large dusty vortex corresponding to the
upper panels of Fig. 22. Snapshots of the dust-to-gas ratio (lower left
panel), the dust-to-gas scale height ratio (middle left panel) and the
mid-plane gas pressure scaled with its azimuthally averaged value at
each radius are shown. The right panels show the dust vorticity (42)
at different heights (z = 0 in the lower right panel). The arrows in the
lower right panel illustrate the dust velocity in the frame co-moving
with the Keplerian shear and where in addition the spatial average of
the azimuthal velocity over the displayed region has been subtracted to
suppress the contribution of the vortex bulk motion.

Moreover, these elongated vortices are likely less affected by the
elliptic instability in our simulations since for such vortices this
instability grows slowly and requires high radial resolution.

Richard et al. (2016) found that long-lived vortices with
larger aspect ratios can form in their simulations if the disc
possesses relatively long cooling times &0.5Ω−1 and steep tem-
perature profiles with q = 2. They argued that for such disc
parameters, the SBI (Petersen et al. 2007a,b; Lesur & Papaloizou
2010) can amplify the vortices, whereas the SBI is inactive for
shorter cooling times (such as our locally isothermal discs), shal-
lower temperature profiles, or both. However, since the VSI most
likely appears in disc regions that are not expected to fulfill the
criteria for the SBI (although the simulations of Pfeil & Klahr
(2021) suggest that the VSI can exist in the inner, optically thick
part of a PPD, where also the SBI is expected to be active)
Richard et al. (2016) concluded that the vortices resulting from
the VSI are unlikely to promote planetesimal formation on global
scales. It was later shown by Manger & Klahr (2018) that the VSI
can generate large, long-lived vortices in an isothermal disc and
that the reason for the absence of such vortices in the simulations
of Richard et al. (2016) was an azimuthal simulation domain that
was simply too small.

Furthermore, it is unlikely that the mechanism that eventu-
ally destroys the large-scale vortices in our simulations is the
same as that in previous 2D simulations of dusty vortices (Fu
et al. 2014; Crnkovic-Rubsamen et al. 2015; Raettig et al. 2015;
Surville & Mayer 2019), which might be the heavy core insta-
bility (Chang & Oishi 2010). The results presented in Fig. 22
suggest, rather, that the lifetime of the large scale vortices in
our simulations is independent of the amount of dust concen-
trated within them. It can be expected that whatever instability
attacked vortices in the aforementioned high-resolution shear-
ing sheet simulations is not resolved here. Since the vortices
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do disappear on timescales that are in agreement with the life-
times of dust-free vortices (discussed in Sect. 5.1), this suggests
that the mechanism of destruction is also the same. Most likely
this is a combination of turbulent diffusion and Keplerian shear
that disrupts large vortices in our simulations. The influence of
the elliptical instability (Lesur & Papaloizou 2009), the parasitic
KHI (Latter & Papaloizou 2018), or the VSI itself in the vortex
core must be clarified in future high-resolution 3D simulations.

6. Summary and conclusion

We studied the effect of a pressure bump on the evolution of
dust in a PPD with fully developed turbulence generated by the
VSI. We conducted global 2D axisymmetric and 3D, locally
isothermal simulations of gas and dust, modelling the outer parts
(R & 10 au) of PPDs that are heated by stellar irradiation. Dust
particles were treated as a pressureless fluid and its back reac-
tion onto gas through drag was taken into account. In particular,
we investigated the influence of the particle’s Stokes number τ0,
the disc’s initial dust abundance Z = Σd/Σg, and the amplitude
A of the pressure bump on dust accumulation at the bump site.
In our models, A corresponds to the fractional increase in the
gas surface density over a bump width of two gas scale heights
compared to the ambient background. The range of considered
Stokes numbers τ0 = 10−3−10−2 corresponds to particle sizes
from ∼280µm at 10 au to ∼9µm at 100 au for τ0 = 10−3 or
between ∼3 mm and 90µm for τ0 = 10−2.

The VSI is a robust, purely hydrodynamical instability in
PPDs that drives weak to moderate turbulence and transport
in PPD dead zones (Nelson et al. 2013; Stoll & Kley 2014,
2016; Manger et al. 2021). We find α-viscosity parameter values
∼10−4–10−3, where lower values correspond to larger Z. These
α values are consistent with those reported in the aforemen-
tioned studies. VSI activity weakens with dust-loading because
of stabilization provided by dust-induced buoyancy (Lin 2019).

When active, the VSI results in strong vertical mixing of dust
particles and is therefore a suitable source of turbulence to test
the robustness of planetesimal formation in the vicinity of a pres-
sure bump (Flock et al. 2017; Lin 2019; Flock et al. 2020). We
find that a moderate pressure bump A & 0.2 collects sufficient
amounts of dust to reach local dust-to-gas density ratios ε > 1 at
solar metallicity, Z = 0.01, and Stokes numbers, τ0 ∼ 10−2.

We find a morphology of dust concentrations at the pres-
sure bump transition from non-axisymmetric to axisymmetric
with increasing background metallicity Z or Stokes number τ0.
In particular, at lower Z . 0.01–0.03 and τ0 ∼ 10−3, a weak
dust ring forms that gives rise to the formation of one or more
vortices with enhanced (but still much lower than unity) dust-
to-gas ratio. These vortices subsequently migrate inwards until
they leave the computational domain or dissolve in the back-
ground flow. In these simulations, the pressure bump decays
due to turbulent diffusion. At low metallicities and larger Stokes
numbers, τ0 & 5 × 10−3, dust rings of significant dust-to-gas
ratios (order unity) form that are generally highly turbulent, non-
axisymmetric in appearance, and undergo inward drift. In some
cases, such as the one shown in the lower panel of Fig. 22, these
rings spawn a vortex that concentrates most of the dust within the
ring before it shears out into a new dust ring after some hundreds
of orbits. Moreover, in certain parameter regimes (intermedi-
ate values of τ0 and larger A = 0.4) such dust rings can spawn
multiple vortices, which either split off and migrate inward,
or, as described above, concentrate most of the dust within the
ring throughout the entire simulation time (cf. Fig. 17). In such

simulations, the pressure bump remains intact or even gets sig-
nificantly amplified. The behavior of dust rings just described
can be explained by the presence of an instability of dusty rings
that is fed by gradients in the dust-to-gas ratio that arise from the
corrugation motion of the dust-layer adjacent to the ring due to
the VSI.

At large metallicities Z & 0.05, we find no notable long-lived
vortices form. Instead, high density dust rings with weak or neg-
ligible non-axisymmetries develop, with dust-to-gas ratios that
exceed unity by a large margin for Stokes numbers τ0 & 5×10−3.

Our 2D axisymmetric simulations capture large parts of the
findings described above. That is, they adequately describe the
settling of dust in the disc mid-plane as well as the formation
of dust rings at pressure bumps. These dust rings can undergo
inward drift and disruption due to a dusty gas instability pow-
ered by the VSI. Moreover, critical combinations of Z and τ0
required to surpass unity dust-to-gas ratios agree fairly well
with those inferred from 3D simulations. For example, in the
absence of a pressure bump, Z & 0.05 is required to achieve this
for τ0 & 10−2, while in the presence of a mild pressure bump
(A & 0.2), a solar metallicity Z & 0.01 is sufficient. On the other
hand, the formation of dust-collecting vortices and other possi-
ble non-axisymmetric structures are obviously not captured in
axisymmetric simulations. Also, due to the lack of turbulent pla-
nar (α) diffusion in the latter simulations dust rings can become
very thin at large Z values with dust-to-gas ratios much higher
than in 3D simulations.

Our results are potentially relevant to the small (albeit non-
negligible) fraction of asymmetric dust distributions compared
to axisymmetric ones, as seen in ALMA images of PPDs
(van der Marel et al. 2021). From our results, it may be possible
to infer the background metallicities or particle sizes in observed
PPDs that contain dust rings based on the degree of asymme-
try. As we have shown, asymmetries in dust rings “naturally”
occur in a VSI-turbulent disc when the metallicity in the region
where a pressure bump starts to accumulate dust is sufficiently
low (Z . 0.03). A direct triggering of the RWI is not required in
this scenario.

Our findings do support the idea that vortices are a possible
explanation for observed asymmetries of dust rings in PPDs – as
was recently debated in van der Marel et al. (2021), since it is
possible (given reasonable dust parameters) for new vortices to
continuously be formed in unstable dust rings, such as the one
presented in Fig. 17. Moreover, our results indicate that vortices
formed by the VSI at a pressure bump of moderate amplitude
A = 0.2–0.4 could, under the right circumstances, play a role in
planetesimal formation, since order unity dust-to-gas ratios can
be achieved within them for small particle sizes τ ∼ 10−2 and
solar metallicity Z = 0.01.

In this study, we did not consider the possibility of a reforc-
ing mechanism for the pressure bump, such as in Carrera et al.
(2021a) and Carrera et al. (2021b). Based on our finding that dust
rings, which form at a pressure bump, drift inwards for lower
metallicities Z . 0.03 (Sect. 4.2), we speculate that a single
pressure bump, if it were reinforced, could (in principle) spawn
multiple dust rings that would end up at smaller disc radii. As
long as dust keeps flowing in from larger radii, we would expect
a continuous cycle in which the pressure bump collects dust into
a ring and, as soon as the dust-to-gas ratio reaches a certain
(low) level, instabilities (as discussed in Sect. 3.2) set in and the
dust ring will drift inward. Verifying this scenario would require
either a considerably larger domain size or a continuous inflow
of dust at the outer domain boundary. Furthermore, the inward
drift of dust rings (cf. Fig. 16) may be important when inferring
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the locations of bump-generating structures such as planet gaps
or snow lines; that is to say that the observed dust rings may not
be formed in situ.

The spatial resolution of our simulations is insufficient to
resolve several small-scale instabilities that can affect the evo-
lution of dusty rings and vortices. In particular, we did not
resolve the SI (Youdin & Goodman 2005), which will start play-
ing a role when unity dust-to-gas density ratios are attained.
Previous 2D simulations (Fu et al. 2014; Raettig et al. 2015;
Crnkovic-Rubsamen et al. 2015; Surville & Mayer 2019) suggest
that vortices are destroyed by small-scale dust-gas instabilities
once dust-to-gas ratios (and, hence, dust feedback) become suffi-
ciently high. On the other hand, the 3D shearing box simulations
by Lyra et al. (2018) and Raettig et al. (2021) show that vertically
extended vortices can remain intact even when high values of
ε are reached, as feedback is only important at the mid-plane.
In 3D, however, the elliptical instability (Lesur & Papaloizou
2009) should operate but is most likely unresolved in our mod-
els, which may shorten the lifetime of the large vortices seen in
our simulations. Other effects, such as the dust settling instability
(Squire & Hopkins 2018; Krapp et al. 2020), the KHI of the mid-
plane dust-layer (Chiang 2008; Barranco 2009), and vertically
shearing streaming instabilities (Ishitsu et al. 2009; Lin 2021)
are also not captured. Conducting global 3D simulations of the
VSI that also resolve the SI and these small-scale instabilities are
computationally too expensive at this time. Schäfer et al. (2020)
performed global 2D axisymmetric simulations of the VSI and
the SI and this setup could be used as a first step to investigate
some aspects of the common effect of the SI and VSI on dust
rings.

For a realistic modelling of dust concentration in rings and
vortices, we would ultimately need to consider simulations that
employ a distribution of particle sizes that are (in addition)
allowed to change due coagulation and fragmentation, since par-
ticle growth is expected to be enhanced in these structures. Even
in the absence of the latter, the presence of multiple dust species
can have a significant impact on the evolution of the SI (Bai &
Stone 2010; Krapp et al. 2019; Paardekooper et al. 2020; Zhu &
Yang 2021; Schaffer et al. 2021) – this, in turn, can affect the
evolution of dust rings and dust-laden vortices.

Throughout this study, we assume a fixed temperature profile
with power-law index q = 1. Decreasing this value will result in
a weakening of the VSI, which is then much more sensitive to
dusty buoyancy (Lin 2019), shifting critical values of the metal-
licity Z encountered in our study to lower values. The opposite
will be true if q is increased. Eventually, a more realistic equa-
tion of state including a finite cooling time should be considered.
For instance, Fung & Ono (2021) showed in 2D shearing sheet
simulations that a finite cooling time can have adverse effects on
vortex life times at disc radii that are relevant to our work. On the
other hand, the dust-free simulations of Richard et al. (2016) and
Pfeil & Klahr (2021) suggest that large long-lived vortices can
be supported by the SBI (Lesur & Papaloizou 2010) when the
cooling time is increased. In a follow-up work, we will explore
the impact of finite cooling times and multiple grain sizes on the
evolution of pressure bumps in turbulent PPDs.
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Appendix A: Influence of temperature slope q on
dusty gas instability

In Section 3.3, we describe how the VSI leads to the emergence
of a dusty gas instability by inducing a corrugation motion of the
dusty mid-plane layer. To further substantiate this hypothesis, we
additionally conducted 2D axisymmetric simulations, including
an initial pressure bump with A = 0.4 and with reduced values
of the temperature slope, q, as this should result in a weaker VSI
and hence a weaker dusty gas instability. The results of these
simulations are presented in Figures A.1 and A.2 for the cases
τ0 = 6 · 10−3 with z = 0.01 and z = 0.03, respectively. From left
to right, the simulations adopt a temperature slope q = 1 (the
fiducial value), q = 0.75, q = 0.5, and q = 0.1. According to
observational studies (Andrews et al. 2009), the two intermedi-
ate values q = 0.75 and q = 0.5 should be the most realistic ones
to model the outer parts of PPDs. With decreasing value of q,
we find that the inward drifting motion as well as the splitting
of dust rings is increasingly mitigated. However, the inward drift
remains significant for all but the smallest value of q considered
here. The simulations with the smallest value q = 0.1 are almost
entirely laminar with only very weak VSI activity. Additional
unstratified 2D simulations, as well as 1D simulations with var-
ious values of q ≤ 1 that we carried out, are very similar to the
cases with q = 0.1 shown here and therefore, we do not present
them here.

Appendix B: Influence of density slope p on vortex
evolution

As described in Section 5.1, we hypothesize that the size of
large vortices depends on their capability to absorb small vor-
tices in their vicinity. Based on the study of Paardekooper et al.
(2010) we expect this capability to be increased for flatter sur-
face density profiles where small vortices are expected to be
more efficiently attracted by the mild pressure maximum corre-
sponding to a large vortex (cf. Figure 23). To test this hypothesis,
we conducted 3D dust-free simulations with varying gas surface
mass density slope, s (and, hence, varying mid-plane gas density
slope, p). These simulations are presented in Figure B.1. The
results in the left panels correspond to ∼ 1000 orbits and illus-
trate that for |p| ≤ 1 vortices are substantially stronger and more
numerous than in the simulation with p = 3.5. In this regard,
our fiducial run with p = 2.5 (lower left panel of Figure 18) is
similar to the case where p = 3.5. An inspection of the time
evolution of the mid-plane gas density (in the right panels of
Figure B.1) shows the development of bumps and dips, which,
again, are believed to be a consequence of the VSI turbulent mass
transport and which are more prominent in the simulations with
smaller |p|. We find that large vortices in simulations with |p| ≤ 1
migrate slowly, in some cases, without a detectable preference
for the direction. On the other hand, the vortices in the simulation
with p = 3.5 undergo inward migration similar to the vortices in
Figure 18, where p = 2.5. This is expected as a consequence
of the overall steeper density profiles in the latter simulations.
Typical migration rates in the simulations with p = 2.5 (Figure
18) are ∼ 0.25 − 0.3 Hg0/(100 orbits), whereas in the simulation
with p = 3.5, we find values of ∼ 0.4 Hg0/(100 orbits). More-
over, due to the similar results of the simulations with |p| ≤ 1,
this suggests that it is the mid-plane gas volume density that
determines the migration speed of vortices (and, therefore, their
possible growth by absorption of smaller vortices), rather than
the surface mass density; namely, for p = −1, 0, 1, 2.5, 3.5, the
gas surface mass density Σg follows a power-law with indices

s = −2,−1, 0, 1.5, 2.5, respectively. Thus, if Σg were the relevant
quantity to vortex migration, we would expect the strongest vor-
tices to occur for p = 0, 1, 2.5 and for there to be only a slight
difference between the simulations with p = 0, 2.5 (p = 2.5
being the fiducial case), which is not what we observe. These
results are also compatible with the findings of Manger et al.
(2020), where the vortices in their simulations with p = 0.66
and p = 1.5 appeared very similar, although the vortices in the
top panels (p = 0.66) of their Figure 8 do appear slightly larger
than those in the bottom panels (p = 1.5).
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Fig. A.1. Time evolution of the dust-to-gas ratio in the vicinity of a pressure bump with amplitude A = 0.4. Compared from left to right are
different temperature slopes q, with the same metallicity Z = 0.01 and Stokes number τ0 = 6 · 10−3. The over-plotted solid curves are the mid-plane
gas pressure at times indicated by horizontal dashed lines. The dashed curves are the initial gas pressure for comparison. The arrows indicate the
direction of dust movement as predicted by Equation (36) and are all normalized to have the same length.

Fig. A.2. Time evolution of the dust-to-gas ratio in the vicinity of a pressure bump with amplitude A = 0.4. Compared from left to right are
different temperature slopes q, with the same metallicity Z = 0.03 and Stokes number τ0 = 6 · 10−3. The over-plotted solid curves are the mid-plane
gas pressure at times indicated by horizontal dashed lines. The dashed curves are the initial gas pressure for comparison. The arrows indicate the
direction of dust movement as predicted by Equation (36) and are all normalized to have the same length.
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Fig. B.1. Comparison of vortex formation in dust-free simulations with varying gas density slope p through corresponding variation of the slope s
of the surface mass density. Left: Mid-plane plots of the z-component of the gas vorticity (42) after ∼ 1000 orbits. Right: Evolution of the mid-plane
gas density. The dashed lines indicate the locations of three large vortices at ∼ 1000 orbits.
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