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ABSTRACT
Protoplanets may be born into dust-rich environments if planetesimals formed through stream-
ing or gravitational instabilities, or if the protoplanetary disc is undergoing mass-loss due to
disc winds or photoevaporation. Motivated by this possibility, we explore the interaction be-
tween low-mass planets and dusty protoplanetary discs with focus on disc–planet torques. We
implement Lin & Youdin’s newly developed, purely hydrodynamic model of dusty gas into
the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that
for imperfectly coupled dust and high metallicity, e.g. Stokes number 10−3 and dust-to-gas
ratio �d/�g = 0.5, a ‘bubble’ develops inside the planet’s co-orbital region, which introduces
unsteadiness in the flow. The resulting disc–planet torques sustain large amplitude oscillations
that persists well beyond that in simulations with perfectly coupled dust or low dust-loading,
where co-rotation torques are always damped. We show that the desaturation of the co-rotation
torques by finite-sized particles is related to potential vorticity generation from the misalign-
ment of dust and gas densities. We briefly discuss possible implications for the orbital evolution
of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin’s dust-free framework
reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping
by pressure bumps, dust-settling, and the streaming instability.

Key words: accretion, accretion discs – hydrodynamics – methods: numerical – planet-disc
interactions – protoplanetary discs.

1 IN T RO D U C T I O N

The gravitational interaction between protoplanets and their proto-
planetary disc, which leads to the planet’s orbital evolution, likely
plays a key role in shaping the architecture of planetary systems
(Baruteau et al. 2014, 2016). It is thus necessary to understand how
realistic disc conditions affect planet–disc interaction.

Since the pioneering study of Goldreich & Tremaine (1980)
almost four decades ago, the disc–planet problem has been ex-
tended to include many physical effects expected in protoplanetary
discs. These include turbulence (e.g. Nelson & Papaloizou 2003;
Baruteau, Fromang, Nelson & Masset 2011b; Uribe et al. 2011;
Stoll, Picogna & Kley 2017) or lack thereof (e.g. Rafikov 2002;
Li et al. 2009; Fung & Chiang 2017); large-scale magnetic fields
(e.g. Terquem 2003; Guilet, Baruteau & Papaloizou 2013; McNally
et al. 2017); dynamical torques (e.g. Masset & Papaloizou 2003;
Pepliński, Artymowicz & Mellema 2008; Paardekooper 2014); disc
self-gravity (e.g. Baruteau & Masset 2008b; Zhang et al. 2008;
Baruteau et al. 2011a); planet-induced instabilities (e.g. Koller, Li
& Lin 2003; Li et al. 2005; Lin & Papaloizou 2011; Fu et al.
2014a); and non-isothermal discs (e.g. Paardekooper & Mellema

� E-mail: mklin@asiaa.sinica.edu.tw

2006, 2008; Baruteau & Masset 2008a; Masset & Casoli 2010;
Paardekooper et al. 2010; Benı́tez-Llambay et al. 2015), to name
a few. While these studies present important generalizations, they
have been limited to purely gaseous discs.

However, protoplanetary discs are dusty (Testi et al. 2014).
It is thus natural to consider dusty disc–planet interaction (e.g.
Paardekooper & Mellema 2004; Fouchet et al. 2007; Ayliffe et al.
2012; Zhu et al. 2012; Dipierro et al. 2016; Dipierro & Laibe 2017).
Recent efforts in this direction have been largely motivated by ob-
servations of dusty sub-structures in protoplanetary discs (e.g. van
der Marel et al. 2013; ALMA Partnership 2015; Andrews et al.
2016; Cieza et al. 2017; van Boekel et al. 2017; van der Plas et al.
2017); as disc–planet interaction is a potential mechanism to gen-
erate dust rings (Dipierro et al. 2015; Picogna & Kley 2015; Jin
et al. 2016; Rosotti et al. 2016; Bae, Zhu & Hartmann 2017; Dong
et al. 2017) and dust clumps (Lyra et al. 2009; Fu et al. 2014b; Zhu
et al. 2014; Bae, Zhu & Hartmann 2016) observed in these systems.
These studies thus focus on the dust morphology instead of the
planet’s response to the dusty disc. For a typical dust-to-gas ratio of
∼1 per cent, one may not expect disc-planet torques to differ from
pure gas models. Recently, however, Benı́tez-Llambay & Pessah
(2018) performed the first study on the effect of dust dynamics on
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planetary torques, and found that dust cannot be ignored even at
such low metallicities.

On the other hand, planet migration in discs with high dust-to-gas
ratios has not been studied in detail. This, however, appears to be
a natural limit to consider, since planetesimal formation in the first
place may require dust-rich environments (Johansen et al. 2014).
Examples include gravitational instability (Goldreich & Ward 1973)
and the streaming instability, which typically require local dust-to-
gas ratios >1 to operate efficiently (Youdin & Goodman 2005;
Johansen & Youdin 2007). Several processes can enhance the dust-
to-gas ratio, including vertical dust-settling (Takeuchi & Lin 2002);
gas mass-loss due to photoevaporation (Alexander et al. 2014) or
magnetic winds (Bai 2016); and feedback of dust-drag on the gas
(Gonzalez, Laibe & Maddison 2017; Kanagawa et al. 2017).

Motivated by these considerations, we explore the interaction
between dust-rich discs and embedded planets with focus on disc–
planet torques. In order to connect with previous studies of planet
migration in pure gas discs, it is desirable to model dusty gas as a
single fluid. Such an approach was recently presented by Laibe &
Price (2014) and Price & Laibe (2015), and further developed by
Lin & Youdin (2017, hereafter LY17).

LY17 showed that for sufficiently small dust particles mixed with
polytropic gas, the dusty-gas system is equivalent to pure-gas dy-
namics subject to cooling/heating. Since gaseous disc–planet inter-
action has been well studied, this connection allows us to understand
new results obtained from dusty discs in terms of established re-
sults based on pure gas discs. This work presents the first numerical
application of LY17’s framework.

This paper is organized as follows. In Section 2, we first review
LY17’s dust-free description of dusty protoplanetary discs and its
numerical implementation. In Section 3, we describe equilibrium
2D disc models. In Section 4, we present numerical simulations
of low-mass planets embedded in 2D dusty discs with emphasis on
disc–planet torques. We find for sufficiently large particles and dust-
loading, that disc–planet torques remain oscillatory for extended
periods of time compared to small particles and/or dust-to-gas ratios.
We summarize and discuss potential implications of these results in
Section 5. In the Appendices, we present additional simulations to
demonstrate LY17’s framework reproduces several standard results
in 2D and 3D dusty discs, including dust-trapping at planet gaps,
the streaming instability, and dust-settling.

2 DUST-FREE M ODELLING O F DUSTY
PROTOP LANETA RY DISCS

In this section, we review the dust-free description of dusty proto-
planetary discs developed by LY17. This is achieved by assuming
small dust particles and polytropic gas. The governing equations
for dusty gas discs can then be written in a form similar to pure
gas dynamics and readily implemented into existing hydrodynamic
codes.

The physical system of interest is a dusty accretion disc orbiting
a central star of mass M∗. Disc self-gravity, magnetic fields, and
viscosity are neglected. Cylindrical (R, ϕ, z) and spherical (r, θ ,
ϕ) coordinates are centred on the star. The gas phase has density,
pressure, and velocity fields ρg, P , vg, respectively. The disc is
nearly Keplerian with angular velocity � � �K(R) ≡

√
GM∗/R3

where G is the gravitational constant.

2.1 Simplifying assumptions

We consider small dust particles strongly but not necessarily per-
fectly coupled to the gas. We approximate the dust particles as a
single, pressureless fluid with density ρd and velocity vd (Jacquet,
Balbus & Latter 2011). The mutual dust–gas drag is characterized
by the stopping time ts such that

ρd
∂vd

∂t

∣∣∣∣
drag

= −ρg
∂vg

∂t

∣∣∣∣
drag

= −ρgρd

ρ

(
vd − vg

)
ts

. (1)

is the dust–gas friction force per unit volume, where

ρ ≡ ρg + ρd (2)

is the total density.
We consider the Epstein regime with relative stopping times given

by ts = ρ•s•/ρcs (Weidenschilling 1977), where ρ•, s• is the inter-
nal density and radius of a grain, respectively; and cs is the gas
sound-speed (see below). In practice, we specify the dimensionless
stopping time or Stokes number Tstop such that

ts = ρ0cs0

ρcs

Tstop

�K0
, (3)

where subscript 0 here and below corresponds to evaluation at the
reference cylindrical radius R0 and disc mid-plane z = 0. Note that
our definition of the stopping time is related to the particle stopping
time τ s = tsρ/ρg.

2.1.1 Terminal velocity approximation

We assume the particles are sufficiently small so their stopping
times satisfy

ts�K � 1. (4)

In this limit the dust velocity vd can be obtained from the terminal
velocity approximation:

vd = vg + ts
∇P

ρg
(5)

(Youdin & Goodman 2005; Jacquet et al. 2011; Price & Laibe
2015, LY17). Equation (5) is a key approximation in our model. It
reflects the fact that particles tend to drift towards pressure maxima
(Whipple 1972; Weidenschilling 1977).

2.1.2 Polytropic gas

The second simplification we make is to consider polytropic gas,
where the thermal pressure P is given by

P = c2
s (R)ρg0

(
ρg

ρg0

)ξ

≡ K(R)ρξ
g , (6)

where cs(R) is prescribed below and ξ is the constant polytropic
index. In practice we consider ξ � 1 or isothermal gas. Equation
(6) is to hold at all times. For an ideal gas the disc temperature T
can be obtained from P = RρgT , where R is the gas constant, so
c2
s ∝ T for ξ = 1.

We take vertically isothermal, power-law radial temperature pro-
files so that,

c2
s (R) = c2

s0

(
R

R0

)−q

. (7)
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We also define

Hg(R) ≡ cs(R)

�K(R)
. (8)

This is the pressure scale height for a vertically isothermal, pure gas
disc. The corresponding aspect-ratio is hg ≡ Hg/R.

By adopting the terminal velocity approximation, we eliminate
the need to solve for the dust velocity vd; and by adopting a poly-
tropic gas we eliminate the need for a gas energy equation. However,
we show below that the mixture still obeys an effective energy equa-
tion, which completes the analogy with hydrodynamics.

2.2 Governing equations

With the above approximations the dusty accretion disc can be
described (in a rotating frame with angular velocity �K0 ẑ) by

Dρ

Dt
= −ρ∇ · v, (9)

Dv
Dt

= − 1
ρ
∇P − ∇
 − 2�K0 ẑ × v, (10)

Dfd
Dt

= − 1
ρ
∇ · (fdts∇P ) (11)

(LY17), where v = (
ρdvd + ρgvg

)
/ρ is the mixture’s centre of

mass velocity; 
 is an effective gravitational potential; and the
dust-fraction fd = ρd/ρ is also given via the dust-to-gas ratio
ε = ρd/ρg = fd/(1 − fd).

Equations (9) and (10) describe the conservation of total mass and
momentum of the mixture, respectively. Equation (11) results from
dust mass conservation with the terminal velocity approximation.
The diffusion-like term on the right-hand side of equation (11)
accounts for the effect of finite dust–gas coupling. If ts = 0 then
dust is perfectly coupled to the gas, and fd is advectively conserved.
When ts > 0, dust can slip past the gas and drift towards pressure
maxima.

We refer the reader to Laibe & Price (2014) for a derivation of
these equations in the non-rotating frame and Price & Laibe (2015)
for an implementation in smoothed particle hydrodynamics. Recent
applications can be found in Ragusa et al. (2017) and Tricco, Price
& Laibe (2017). We will implement an alternate form of these
equations in grid-based hydrodynamics.

2.3 Gravitational potential

In the rotating frame the total gravitational potential is


(R, φ, z) = 
∗(R, z) + 
p(R, φ, z) − 1
2 R2�2

K0. (12)

Here,


∗(R, z) = − GM∗√
R2 + z2

� −R2�2
K

(
1 − z2

2R2

)
. (13)

is the stellar potential, and the second equality is its approximate
form in a thin-disc (|z| � R)

We also allow for a planet fixed on a Keplerian circular orbit at
radius R0 at the disc mid-plane. Placing the planet at ϕ = π in the
rotating frame, the planet potential is


p(R, φ, z) = − GMp√
R2 + R2

0 − 2RR0 cos (φ − π ) + z2 + r2
s

+ GMp

R2
0

R cos (φ − π ), (14)

where rs is the softening length. The second term is the indirect
potential to account for the acceleration of the star–planet system
centre of mass.

2.4 Dust evolution as effective energy equations

Equation (11), which governs dust evolution, may be recast into a
more familiar form by noting the dust-fraction can be eliminated
from the problem by using the gas equation of state, equation (6):

fd = 1 − 1

ρ

(
P

K

)1/ξ

. (15)

Then equation (11) can be converted to read

DP

Dt
= −ξP∇ · v + P v · ∇ ln c2

s + ξP

ρg
∇ · (fdts∇P ) , (16)

with ρg = ρg(P; R) from equation (6) and fd = fd(P, ρ; R) from
equation (15).

Notice equation (16) is identical in form to the pressure equation
of a pure, ideal gas with adiabatic index γ = ξ , subject to heating
and cooling. However, equation (16) does not physically reflect the
mixture’s energy, but is just a consequence of assuming a polytropic
gas together with dust mass conservation and the terminal velocity
approximation (LY17). Nevertheless, we use equation (16) instead
equation (11) to convert the dusty problem to standard hydrody-
namics. Equations (9), (10), and (16) are three equations for the
unknowns (ρ, v, P ). Although the physical system describes dusty
gas, dust does not make an explicit appearance in the equations: the
model is pure hydrodynamical.

The main advantage of evolving the pressure via equation (16)
instead of using equation (6) is practical ease in the numerical
implementation of dust evolution, equation (11) (see Section 2.6).
Furthermore, modelling the dusty problem in a dust-free manner
allows us to generalize pure gas phenomena to dusty discs and gain
physical insight. Our dust-free model connects our new results on
dusty disc–planet torques to previous results established for pure
gas discs (e.g. Paardekooper et al. 2010).

In the Appendices, we demonstrate this hydrodynamic frame-
work reproduces several other expected results related to dust–gas
interaction in protoplanetary discs. These include radial dust drift
and dust-trapping at planet gaps (Appendix A); the streaming in-
stability (Appendix B); and dust-settling (Appendix C). The latter
two cases consider 3D discs.

2.4.1 Effective total energy

If we define the effective total energy density E with

E ≡ P

ξ − 1
+ 1

2
ρ|v|2 + ρ
, (17)

then combining equations (10) and (16) gives

∂E

∂t
+ ∇ · [(E + P )v] = P

ξ − 1
v · ∇ ln c2

s

+ ξP

ρg(ξ − 1)
∇ · (fdts∇P ) , (18)

where we have assumed a time-independent gravitational potential,
so ∂t
 = 0.

It should be emphasized that E does not represent the true total
energy density of the dusty gas. Instead, E is simply defined such that
upon combining the momentum and mass conservation equations
with the polytropic equation of state (equation 6), we arrive at an
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evolutionary equation (18) that is similar in form to the total energy
equation of a pure gas with source terms. The first term on the right-
hand-side (RHS) is analogous to optically thin cooling: it reflects
the fixed temperature profile imposed upon the system (equation 7).
The second, diffusion-like term reflects particle drift relative to the
gas.

2.4.2 Effective entropy

We can also recast the thermal energy evolution (equation 16) in
terms of entropy evolution by defining the mixture’s effective (di-
mensionless) entropy as S = ln (P/ρξ ). Then

DS

Dt
= v · ∇ ln c2

s + ξ

ρg
∇ · (fdts∇P ) . (19)

This form is appropriate for hydrodynamic codes that evolve the
system entropy, rather than energy.

2.4.3 Physical interpretation

Although the true disc temperature T is prescribed via the equation
of state (equation 7), the dusty-gas mixture still obeys an effective
energy equation, converted from the dust evolutionary equation.
This indicates that the mixture possesses a ‘dynamic’ temperature
T̃ that depends on the dust-to-gas ratio.

To see this, let us regard the mixture as a single ideal fluid with
P = RρT̃ . As the pressure is actually given by P = RρgT , we
find

T̃ = T

1 + ε
, (20)

and recall ε = ρd/ρg. Thus, increasing the dust-to-gas ratio low-
ers the mixture’s dynamic temperature. This occurs because dust-
loading increases the mixture’s inertia, but it does not contribute to
thermal pressure.

The above discussion implies the effective sound speed
(�√

P/ρ) of a dusty disc is reduced by a factor of
√

1 + ε. Thus,
the effective scale height H̃ is also reduced:

H̃ = Hg√
1 + ε

, (21)

and we can define the effective aspect-ratio h̃ ≡ H̃ /R. The disc be-
comes thinner with increasing dust-load at fixed (true) temperature.

In LY17’s model, dust-loading is interpreted as reducing the dy-
namic temperature or sound-speed, so a positive particle flux is
analogous to a negative heat flux. A particle drift towards a pressure
maximum constitutes to cooling the location of the maximum. This
explains why dust–gas drag appears in an effective energy equation
instead of the momentum equation.

2.5 Potential vorticity generation

It is important to notice that the dusty gas mixture is baroclinic,
because the pressure arises solely from the gas, while the total
density involves both gas and dust. This means the potential vorticity
(PV) or vortensity is generally not conserved, because dust and gas
need not be aligned if they can drift relative to each other.

The PV in the inertial frame is

ζ ≡ ∇ × v + 2�K0 ẑ
ρ

. (22)

It obeys

Dζ

Dt
= ζ · ∇v + 1

ρ3
∇ρ × ∇P . (23)

The second, baroclinic source term, is generally non-zero. For our
equation of state P ∝ c2

s (R)ρξ
g (equation 6) we find

∇ρ × ∇P = P∇ρ × ∇ ln c2
s + ξP

ρg
∇ρd × ∇ρg. (24)

The first term reflects baroclinity due misalignment between the
(imposed) temperature profile and the total density. In the 2D, razor-
thin discs models we consider later, this misalignment requires
∂Rc2

s �= 0 with a non-axisymmetric total density distribution,∂φρ �=
0. However, this source of baroclinity is negligible in our disc–planet
models.

Baroclinity may also arise from a misalignment between gas and
dust densities, ∇ρd × ∇ρg �= 0, which requires a non-uniform
dust-to-gas ratio. For our disc models below this non-uniformity –
and hence baroclinity – largely develops from finite dust–gas drag
(equation 11).

The baroclinic nature of dusty gas was already pointed out by
Laibe & Price (2014). In this work, we present a realization of this
effect in disc–planet interaction. Namely, we will show that PV can
be generated from dust–gas misalignment near the planet due to
dust–gas drift.

2.6 Numerical implementation

Fortunately, many publicly available hydrodynamic codes solve the
energy equation in the form of equation (18). In this work, we use
PLUTO1 (Mignone et al. 2007, 2012) – a general purpose, finite-
volume Godunov code for simulating astrophysical fluids. It can
treat a variety of non-ideal hydrodynamic effects, including energy
source terms similar to the RHS of equation (18). Thus, little effort
is needed to convert PLUTO into a dusty hydrodynamics code.

The true disc temperature profile is imposed by the ∇c2
s term on

the RHS of equation (18). For this we enable PLUTO’s optically thin
cooling module to update the pressure by solving

∂P

∂t
=PvR∂R ln c2

s , ⇒ �P=P
[
exp

(
−q

vR

R
�t

)
−1

]
, (25)

where �P and �t is the pressure update and time-step, respectively;
and we have used equation (7).

Dust–gas drag is represented by second, diffusive term on the
RHS of equation (18). For this we enable PLUTO’s thermal conduction
module. The original module updates the total energy E by solving

∂E

∂t
= ∇ · (κT∇T ), (26)

where T∝P/ρ is the temperature field and κT is the thermal conduc-
tion coefficient. We adapt the module by replacing the temperature
gradient in equation (26) with the pressure gradient,

∇T → ∇P , (27)

and setting the thermal conduction coefficient to

κT → fdts, (28)

with fd = fd(ρ, P; R) via equation (15). Finally, we scale the thermal
conduction term by ξP/ρg(ξ − 1), see equation (18). In practice
this scaling factor is almost a constant because we choose ξ � 1.

1http://plutocode.ph.unito.it

MNRAS 478, 2737–2752 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/2/2737/4992769
by Academia Sinica user
on 05 July 2018

http://plutocode.ph.unito.it


Dusty disc–planet simulations 2741

We use PLUTO’s Super-Time-Stepping algorithm to integrate the dust
diffusion term.

3 R A ZOR - THIN D ISCS

In this paper, we mostly consider 2D, razor-thin discs. To obtain the
2D disc equations from the full 3D models above, we replace ρ by
the surface density � (similarly for the dust and gas components)
and re-interpret P as the vertically integrated pressure. Thus, for
example, the equation of state becomes P = K�ξ

g . We set vz = 0
and the potential functions in Section 2.3 are evaluated at z= 0.
Alternatively, we can consider these 2D models to represent a layer
of disc material about the disc mid-plane.

3.1 Equilibrium structure

We initialize the 2D disc in an axisymmetric, steady state with
total surface density � = �(R) = �g[1 + ε(R)] and velocity field
vϕ(R) = R[�(R) − �K0], vR = 0. These satisfy the equilibrium
radial momentum and energy equations (without a planet)

R�2 = R�2
K(R) + 1

�

dP

dR
, (29)

0 = d

dR

(
Rfdts

dP

dR

)
. (30)

We set the initial gas surface density to

�g(R) = �g0

(
R

R0

)−p

. (31)

For a non-self-gravitating problem, the surface density scale �g0 is
arbitrary.

To obtain � from �g we choose ε(R) to satisfy ‘thermal’ equi-
librium, equation (30). This equation implies

ε

(1 + ε)2 cs(R)�ξ−1
g (R) × d ln P

d ln R
= constant, (32)

where we have used the 2D version of the Epstein drag law, equation
(3). For power-law discs with generally non-zero pressure gradients,
we require the first factor to be constant. We thus obtain ε(R) from

ε(R)

[1 + ε(R)]2 = ε0

(1 + ε0)2

[
cs0

cs(R)

] [
�g0

�g(R)

]ξ−1

≡ F (R).

Notice

(1 − ε)

(1 + ε)3

dε

dR
= dF

dR
. (33)

For typical disc models dF/dR > 0. Then dust-poor discs (ε < 1)
have dust-to-gas ratios increasing with R; whereas dust-rich discs
(ε > 1) have dust-to-gas ratios decreasing with R. Evaluating equa-
tion (33) explicitly gives

d ln (1 + ε)

d ln R
= ε

1 − ε

[q

2
+ (ξ − 1)p

]
. (34)

The special case of constant dust-to-gas ratio requires

q = −2(ξ − 1)p for constant
�d

�g
. (35)

For nearly isothermal gas and p of order unity, the disc temperature
is close to being globally isothermal.

Having specified � we can use equation (29) to set the rotation
profile

�(R) = �K

[
1 − P

� (R�K)2 (q + ξp)

]1/2

, (36)

where we have used equation (7).

3.2 Effective disc structure

Using the equilibrium conditions in Section 3.1, we find the radial
gradient of the total surface density becomes

p̃ ≡ −d ln �

d ln R
= p − ε

1 − ε

[q

2
+ (ξ − 1)p

]
. (37)

Similarly, the radial gradient in the dynamic temperature is

q̃ ≡ −∂ ln T̃

∂ ln R
= q + ε

1 − ε

[q

2
+ (ξ − 1)p

]
. (38)

For constant ε the term in square brackets is zero, so (p, q) = (p̃, q̃)
in this special case.

4 DUSTY DI SC– PLANET INTERAC TI ON

We simulate the response of 2D, razor-thin dusty discs described
above to an embedded low-mass planet and focus on the associated
disc–planet torques. We set ξ = 1.001 to model isothermal gas. We
adopt p = q = 0 as our standard disc profile, which has zero radial
pressure gradient and thus no radial drift of particles initially. We fix
the dynamic disc temperature such that h̃0 = 0.05 for all simulations
by letting the gas aspect-ratio vary as hg0 = √

1 + Z h̃0, where Z
≡ �d/�g is the metallicity. This counter-acts the reduction in the
effective scale height H̃ due to dust-loading.

We consider a planet mass of Mp = 6 × 10−6 M∗, which corre-
sponds to a 2 M⊕ planet orbiting a solar mass star. The planet is
held on a fixed Keplerian circular orbit at R0. The planet potential is
switched on smoothly over one orbit. We adopt a fiducial softening
length of rs = 0.6H̃0 � 2.38rh, where rh = (Mp/3M∗)1/3R0 is the
planet’s Hill radius.

Our simulations summarized in Table 1. We primarily vary the
Stokes number Tstop ≡ ts0�K0 and metallicity Z to explore the effect
of imperfect dust–gas coupling and dust-loading on disc–planet
torques, respectively. We also vary the power-law indices p, q to
examine the effect of the background PV and dust-to-gas ratio
profiles, and consider the effect numerical resolution.

4.1 Numerical setup

The disc domain is R ∈ [0.6, 1.4]R0 and ϕ ∈ [0, 2π ]. We damp all
variables towards their initial values in R ∈ [0.6, 0.68]R0 and R ∈
[1.32, 1.4]R0 on a time-scale of the local orbital period. The radial
boundary ghost cells are kept at their initial states, while azimuthal
boundaries are periodic. This setup is similar to Kley et al. (2012).

We use NR cells logarithmically spaced in R and Nϕ cells uni-
formly spaced in ϕ. Our standard numerical resolution is such that H̃
is resolved by (40,20) cells in the radial and azimuthal directions, re-
spectively. This is similar to the resolution adopted by Paardekooper
et al. (2010).

We adopt standard configurations for the code PLUTO with lin-
ear reconstruction, the HLLC Riemann solver and second-order
Runge–Kutta time integration, and enable the FARGO algorithm
(Masset 2000a,b) to accelerate the simulations.
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Table 1. Summary of disc parameters used in disc–planet simulations. Comments are made relative to the fiducial run.

Run �d/�g Tstop (p, q) NR × Nϕ Comment

Fiducial 0.5 0 (0,0) 720 × 2672 Reference simulation with perfectly coupled particles. Fig. 1.
Decouple 0.5 10−3 (0,0) 720 × 2672 Partially coupled particles. Fig. 2.
LowDust 0.01 10−3 (0,0) 720 × 2672 Reduced dust-loading. Fig. 8.
HighDust 1.0 10−3 (0,0) 720 × 2672 Increased dust-loading. Fig. 8.
FlatPV 0.5 10−3 (1.5,0) 720 × 2672 Zero vortensity gradient (uniform dust-to-gas ratio). Fig. 11.
PPD0 0.5 0 (1,0.5) 720 × 2672 Protoplanetary disc with perfectly coupled dust. Fig. 12.
PPD 0.5 10−3 (1,0.5) 720 × 2672 Protoplanetary disc with imperfectly coupled dust. Fig. 12.
LowRes 0.5 10−3 (0,0) 360 × 1336 Lowered numerical resolution. Fig. 14.
HighRes 0.5 10−3 (0,0) 1440 × 5344 Increased numerical resolution. Fig. 14.

4.2 Torque analyses

The disc-on-planet torque per unit area, or torque density, is defined
as

�� ≡ �
∂
p

∂φ
, (39)

so the total torque acting on the planet is

� =
“

��RdRdφ. (40)

This integration includes the entire disc, i.e. no cut-off is applied
near the planet. We also define the torque per unit radius as

∂�

∂R
= R

∫
��dφ. (41)

We find the effect of dust is to introduce unsteadiness in torques
originating from the planet’s co-orbital region. To focus the torque
analysis in this region, we define the time-averaged torque per unit
radius〈

∂�

∂R

〉
= 1

Tavg

∫
Tavg

∂�

∂R
dt . (42)

The time interval Tavg is the oscillation period for the total torque
(see Section 4.3). This time-averaged torque essentially captures
the steady Lindblad or wave torques outside the co-orbital region;
removing it thus allow us to focus on the co-rotation torques.

We compare the measured torques to a semi-analytic torque for-
mula adapted from that based on pure gas simulations developed by
Paardekooper et al. (2010). In the dust-free limit our models corre-
spond to locally isothermal discs, we thus modify relevant torque
formula from Paardekooper et al. to

�

�ref
= �̂L + �̂c + �̂hs

= − (
2.5 − 0.5q̃ − 0.1p̃

)(
0.4

b

)0.71

− 1.4q̃

(
0.4

b

)1.26

+ 1.1

(
3

2
− p̃

) (
0.4

b

)
(43)

where b ≡ rs/H̃0, and the torque normalization is

�ref = �0R
4
0�

2
K0

(
Mp

M∗

)2
(

1

h̃2
0

)
. (44)

The expressions above are identical in form to Paardekooper et al.’s
equation 49, but accounts for dust-loading in �0, H̃0, h̃0 (Sec-
tion 2.4.3), and the dust-modified effective disc structure (Sec-
tion 3.2); although there is some uncertainty as to whether the
true or dynamic temperature profile should be used (Paardekooper,

Figure 1. Disc-on-planet torques, normalized by ξ ref, for a 2 M⊕ planet in
the fiducial run with dust-to-gas ratio Z = 0.5 and stopping time Tstop = 0
(solid lines). Horizontal lines are semi-analytic torque values adapted from
Paardekooper et al. (2010), where the upper (lower) line corresponds to the
total (Lindblad) torques.

private communication). Equation (43) includes the (normalized)
Lindblad or wave torque �L; the linear co-rotation torque �c; and
the non-linear horseshoe drag �hs. Note that �c = 0 in our standard
disc model with p = q = 0 and constant dust-to-gas ratio.

4.3 Perfectly coupled dust

We begin with a fiducial run with perfectly coupled dust (Tstop = 0)
but high dust-loading, Z= 0.5. In this case, the system is truly a
single fluid and the only effect of dust is to lower the dynamic
temperature of the mixture when compared to the pure gas limit.

Fig. 1 shows that resulting total torque agrees well with equa-
tion (43) for �50P0 when the horseshoe drag remains unsaturated
(Paardekooper et al. 2010); and for t → ∞ when the horseshoe drag
saturates due to mixing of the co-orbital region, leaving only the
Lindblad torques.

This experiment demonstrates that for sufficiently small particles,
disc–planet torques are unaffected once dust-loading is accounted
for in the torque normalizations, namely in increasing the total
surface density and in reducing the disc aspect-ratio.

4.4 Partially coupled dust and torque oscillations

We now allow the dust to be slightly decoupled from the gas by
setting Tstop = 10−3. This decoupled run is compared to the fiducial
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Figure 2. Disc-on-planet torques for a 2 M⊕ planet in a disc with dust-to-
gas ratio Z = 0.5 and stopping time Tstop = 0 (dashed) and Tstop = 10−3

(solid). The three vertical lines correspond to representative timestamps in
Figs 3–6.

Figure 3. Disc-on-planet torques per unit radius, subtracted by the Lindblad
torques, for a 2 M⊕ planet in a disc with dust-to-gas ratio Z = 0.5 and
stopping time Tstop = 0 (left) and Tstop = 10−3 (right). The three timestamps
refer to Fig. 2.

case in Fig. 2. We also extended the simulations to t = 2000P0 to
compare their long-term evolution.

In both cases, the average torque is close to the Lindblad-only
values. For Tstop = 0 the torque oscillations immediately damp
towards the Lindblad-only values, and reaches a steady state by
the end of the simulation. However, in the decoupled run with
Tstop = 10−3, the oscillations are sustained up to ∼1000 orbits
before starting to damp. In fact, the oscillation amplitudes reach
the unsaturated (full) torque values. The torque remains oscillatory
throughout the simulation, but will likely eventually converge to
that of the fiducial, perfectly coupled run.

Fig. 3 compares the torque distributions at the representative
times shown in Fig. 2. Following the procedure outline in Sec-
tion 4.2, we subtract the steady Lindblad torques to highlight the
difference in the co-rotation region. The figure shows that even
a slight dust–gas decoupling can generate and sustain co-rotation
torques, leading to oscillatory behaviour.

In Fig. 4, we compare the surface density evolution in the co-
orbital region. Although the surface density perturbations are small,
as expected for a low-mass planet, they are nevertheless distinct
depending on Tstop. The Tstop = 0 fiducial run has a relatively smooth
surface density distribution. However, in the Tstop = 10−3 decoupled

Figure 4. Normalized surface density for a 2 M⊕ planet in a disc with dust-
to-gas ratio ε0 = 0.5 and stopping time Tstop = 0 (upper) and Tstop = 10−3

(lower). The three timestamps refer to Fig. 2. The planet is located at the
vertical boundaries and the co-orbital flow direction is clockwise. Thus, the
flow near the bottom (top) is ahead (behind) the planet.

Figure 5. Potential vorticity distribution (PV) for a 2 M⊕ planet in a disc
with dust-to-gas ratio Z = 0.5 and stopping time Tstop = 0 (upper) and
Tstop = 10−3 (lower). The three timestamps refer to Fig. 2.

run, we find a ‘bubble’ of underdensity (blue in the figure) develops
just inside the boundary of the co-orbital region. As it librates, it
introduces periodic front-back surface density asymmetries about
the planet, and hence sustains a co-rotation torque. Furthermore, we
find overdense rings develop outside the co-orbital region, but not
in the perfectly coupled case.

4.4.1 Potential vorticity generation from dust–gas misalignment

We note that in pure gas discs the torques originating from the co-
orbital region, specifically the horseshoe drag, is known to be related
to the PV gradient across the co-rotation region (Paardekooper et al.
2010, see also equation 43). We thus compare the PV distribution
between the fiducial and decoupled runs in Fig. 5. Here, the PV is
defined as ζ = ( ẑ · ∇ × v + 2�K0) /�.

Generally, the PV in the co-orbital region undergoes phase mix-
ing, which leads to the saturation or vanishing of the co-rotational
torque (Balmforth & Korycansky 2001). This is the case for
Tstop = 0. However, for Tstop = 10−3 we find a PV ‘blob’ devel-
ops at the boundary of the co-orbital region, though PV still mixes
in the interior. The PV blob corresponds to the surface density
bubble identified above.

Interestingly, we find the blob experiences an increase in PV
whenever it undergoes horseshoe turns as it encounters the planet.
This means that when it completes a libration period, it experiences
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Figure 6. Baroclinic vorticity source ẑ · (∇�d × ∇�g
)

and its time deriva-
tive in the decoupled run with Z = 0.5 and stopping time Tstop = 10−3. Here,
the planet is placed at the centre in each plot. The three timestamps refer to
Fig. 2.

two boosts in PV, but it returns to its original orbital radius. We
expect no net change in the blob’s vorticity, which should be close
to the local Keplerian value. Then since ζ ∝ �−1 has increased, its
surface density must drop, creating a bubble.

In a 2D disc without shocks, the only source of PV comes
from pressure–density misalignment, which is proportional to
∇�d × ∇�g (Section 2.5). We plot this PV source in upper panels
of Fig. 6 for the decoupled run. By comparing the snapshots with
Fig. 5, we see the PV source is positive when the PV blob encounters
the planet on a horseshoe turn, so PV is indeed generated through
dust–gas misalignment near the planet.

Note that ∇�d × ∇�g = 0 in the initial disc. However, once the
system evolves, this PV source may become non-zero as dust and
gas drift relative to each other. We expect this effect to be significant
near the planet as a pressure bump can be created by the planet’s
potential well. Using the 2D versions of equations (9) and (16), with
ξ = 1 and constant cs we find

∂

∂t
(∇� × ∇P ) =

(
∂

∂t
∇�

)
× ∇P + ∇� × ∂

∂t
∇P

= ∇P × ∇ [∇ · (�v)] + ∇ [∇ · (P v)] × ∇�

+ c2
s ∇� × ∇ [∇ · (fdts∇P )] . (45)

We plot the right-hand side of equation (45) in the lower panels
of Fig. 6. (Interestingly, we find the last term is sub-dominant.) It
is indeed positive (negative) when the baroclinic source is posi-
tive (negative), for a PV surplus (deficit). This suggests a positive
feedback loop in generating the PV blob. The blob does not grow
indefinitely, however, probably because of numerical diffusion (see
Section 4.8).

4.4.2 Final disc structure

In Fig. 7, we compare the gas and dust surface density distributions
at t = 2000P0. For Tstop = 0 the dust-to-gas ratio is constant (Z = 0.5)
so the dust distribution is simply a rescaling of the gas profile. For
Tstop = 10−3, however, a double gap develops in the dust. Although
the dust gap is shallow, it is still significant compared to the gas,
which only show small fluctuations. This result is consistent with
recent studies show that low-mass planets can open dust gaps while
leaving the gas relatively unperturbed (Dipierro et al. 2016; Dipierro
& Laibe 2017).

Figure 7. Normalized total (top), gas (middle), and dust (bottom) surface
density distributions for a 2 M⊕ planet in a disc with initial dust-to-gas ratio
Z = 0.5 and stopping time Tstop = 10−3 (solid) and Tstop = 0 (dashed).

Figure 8. Disc-on-planet torques for a 2 M⊕ planet in a disc with stopping
time Tstop = 10−3 and different initial dust-to-gas ratios.

4.5 Dust-loading and vortex instability

We now examine the effect of dust-loading by varying the metal-
licity Z at fixed Tstop = 10−3. In Fig. 8, we compare the decoupled
simulation with Z = 0.5 to cases with Z = 0.01 and Z = 1. The torque
evolution for Z = 0.01, Tstop = 10−3 is similar to the fiducial run
with Z = 0.5, Tstop = 0. This is expected since the baroclinic term,
|∇�d × ∇�g|, vanishes as Z → 0. From equation (11), we also
expect the magnitude of baroclinity to be proportional to ZTstop.
Indeed, an additional run with Z = 5, Tstop = 10−4 show similar
results to Z = 0.5, Tstop = 10−3.
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Figure 9. Disc surface density (top) and potential vorticity (bottom) for the
high dust-to-gas ratio Z = 1 run, showing the development of a co-orbital
vortex (red/blue blob in the surface density/PV, respectively).

Figure 10. Generalized potential vorticity distribution V for a 2 M⊕ planet
in a dusty disc with particle stopping time Tstop = 10−3 and dust-to-gas ratio
Z = 0.5 (upper) and Z = 1.0 (lower).

On the other hand, the torque evolution for the high dust-to-
gas ratio disc (Z = 1) attains larger oscillation amplitudes than Z
= 0.5, and eventually develops high-frequency fluctuations on top
of the oscillations at t � 500P0. We show in Fig. 9 that this is
associated with vortex formation at the separatrix of the co-orbital
region. A similar phenomenon was observed by Paardekooper et al.
(2010) in their pure-gas, adiabatic simulations. They attributed it to
the Rossby Wave Instability (RWI; Lovelace et al. 1999; Li et al.
2000) associated with entropy extrema at the separatrix. This can
arise from entropy advection when there is a background entropy
gradient. In barotropic discs the RWI develops at PV minima (e.g.
de Val-Borro et al. 2007, see also Appendix A).

Based on the equivalence between isothermal, dusty gas, and
adiabatic pure gas, LY17 argued the relevant quantity for the RWI
in isothermal dusty discs is the ‘generalized PV’

V ≡ κ2

2��
×

(
1 + �d

�g

)2

, (46)

where κ2 = R−3∂R

(
R4�2

)
is the square of the epicyclic frequency.

The generalized PV encapsulates both PV (the first factor) and
effective entropy (second term). Recall from Section 2.4.2 that the
effective entropy of an isothermal, dusty disc is related to the dust-
to-gas ratio. Fig. 10 compares the generalized PV profiles for Z = 0.5

Figure 11. Disc-on-planet torques for a 2 M⊕ planet in a disc with stopping
time Tstop = 10−3 and different initial PV profile. Horizontal lines corre-
spond to semi-analytic Lindblad torques, �̂L, for locally isothermal discs
adapted from Paardekooper et al. (2010).

and Z = 1. We indeed find the Z = 1 case develops deeper minima
in V , which subsequently becomes unstable to vortex formation.

For our setup the effective entropy is initially uniform because
�d/�g is constant. Extrema in V at the separatrices thus arise from
(i) advection of the background PV and/or (ii) baroclinic PV and
effective entropy generation due to |∇�d × ∇�g| �= 0. To determine
which effect is responsible, we ran a case with Z = 1, Tstop= 0, where
baroclinity is absent, and found no vortex formation. Thus, in the
case with Z = 1, Tstop = 10−3, extrema in V is associated with the
baroclinic source for PV and effective entropy.

4.6 Discs with flat potential vorticity profiles

Here, we consider a disc model with p = 1.5 so the initial PV
(approximately∝R3/2 − p) is nearly uniform. We choose q =−0.003
so the true temperature increases slightly outwards to maintain a
constant dust-to-gas ratio. These parameters imply vanishing co-
rotation torques initially.

In Fig. 11, we plot the torques measured in this flat PV run, in
comparison with decoupled run with a PV gradient, and the analytic
Lindblad torque value. The oscillation amplitudes are significantly
smaller, and the total torque remains close to the Lindblad-only
values. This experiment demonstrates that the sustained oscilla-
tions requires an initial PV gradient, i.e. a non-vanishing initial
co-rotation torque (specifically the horseshoe drag). In that case
the initial advection of PV across horseshoe turns, thereby cre-
ating a PV surplus, feeds the baroclinic source, which further
generates PV.

4.7 Protoplanetary disc models

We now consider a disc model with p = 1, q = 0.5, which are
typical values for protoplanetary discs. In addition to a PV gradient,
this model also contains a temperature gradient and an initially
non-uniform dust-to-gas ratio. Fig. 12 compares the disc–planet
torques in this model for perfectly coupled and partially coupled
dust. As before, the Tstop = 10−3 run sustains larger amplitude
torque oscillations than the Tstop = 0 run; although oscillations in
the former case begins to damp after t ∼ 400P0, unlike the case with
p = q = 0 (Fig. 2).
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Figure 12. Disc-on-planet torques for a 2 M⊕ planet in a disc with p = 1,
q = 0.5. The initial dust-to-gas ratio and stopping time at R = 1 is Z = 0.5
and Tstop = 10−3 (solid), Tstop = 0 (dashed).

Figure 13. Snapshots of normalized surface density (top) and PV (bottom)
for the p = 1, q = 0.5, Tstop = 10−3 case shown in Fig. 12.

Interestingly, on longer time-scales, Fig. 13 shows that the PPD
model with Tstop = 10−3 develops a vortex at the boundary of the
co-orbital region, though this did not occur in the p = q = 0 run.
The advection of dust-to-gas ratio through horseshoe turns in the
presence of a background gradient in �d/�g likely contributes to
gradients in the disc’s effective entropy at the co-orbital boundary,
in addition to entropy generation from baroclinity. This effect would
favour the RWI in the case with p = 1, q = 0.5.

However, unlike the run with high dust-to-gas ratios (Section 4.5),
here the vortex is a transient feature; dissipating as the co-orbital
region undergoes phase mixing. The total torque then converges to
a nearly constant value similar to the Tstop = 0 case.

4.8 Numerical resolution

Our simulations are carried out in the inviscid limit. Thus, the
smallest scale is always the grid scale. Numerical diffusion could
be important in co-orbital dynamics, specifically the separatrices,
where large gradients can develop.

In Fig. 14, we repeat the decoupled run at half and double the
standard resolution (40, 20 cells per H̃ in r, ϕ, respectively). For t
� 100P0 the linear torques are well converged. For t � 100P0 at

Figure 14. Disc-on-planet torques for a 2 M⊕ planet in a disc with stopping
time Tstop = 10−3 and different resolutions.

low-resolution numerical diffusion causes efficient PV mixing in
the co-orbital region, despite baroclinic source, and the oscillation
damps. This effect is mitigated at high resolution, resulting in larger
torque amplitudes. The torque magnitudes can exceed the initial
values, and even becomes positive at times.

However, we also find vortex formation in the high-resolution
case due to the RWI, because the large gradients at the separatrices
are better resolved. It is thus unclear if seeking true convergence
is meaningful in these inviscid simulations. We emphasize that the
dusty baroclinic generation of PV (and sustained co-orbital torques)
is a physical effect, but require sufficient resolution to counter PV
mixing/ numerical diffusion.

The different resolutions presented here could mimic discs with
different levels of a background turbulent viscosity. As such, the
dust-induced co-orbital torques and RWI would only occur in lam-
inar ‘dead zones’ of protoplanetary discs. This is consistent with
considering a high-metallicity disc in the first place, since only a
low level of turbulence would allow dust-settling (Takeuchi & Lin
2002).

5 SUMMARY AND DI SCUSSI ON

In this paper, we implement a new, dust-free model of dusty gas
developed by Lin & Youdin (2017) into the PLUTO hydrodynamics
code. It assumes the dust particles are small enough so that their
stopping time is sufficiently short to treat the dusty gas as a single-
phase fluid. The model allows for a slight decoupling between gas
and dust by accounting for dust–gas relative drift via a source term
in an effective energy equation. In this first numerical application
of the Lin & Youdin’s dust-free framework, we utilize the code
to revisit disc–planet interaction in the limit of high dust-to-gas
ratios and focus on disc–planet torques. We mainly consider the
effect of stopping times Tstop (or particle size) and dust-loading Z
(or metallicity).

For perfectly coupled dust (Tstop= 0), the disc–planet torques
match to the torque formula adapted from Paardekooper et al.
(2010), which are based on pure gas simulations. We find a good
match when the horseshoe drag is still unsaturated, as well when
the total torque converges to the Lindblad-only values (t � 1000
orbits). The effect of dust-loading can be absorbed into the torque
normalization, namely a reduction in the effective disc scale height
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and in contributing to the total disc mass. Runs with finite stopping
time but low metallicity (e.g. Tstop = 10−3, Z = 0.01) behave simi-
larly to perfectly coupled dust at higher metallicity, in that torques
immediately damp towards the Lindblad-only values.

However, for finite stopping time and high metallicity, e.g.
Tstop = 10−3, Z = 0.5, the torque oscillation amplitudes do not
damp until after ∼1000 orbits (cf. the run with perfectly coupled
dust). The torques remain oscillatory until at least ∼2000 orbits, al-
though it appears to be converging towards the Lindblad values. We
traced this phenomenon to PV generation from the misalignment
between dust and gas surface densities in the planet’s co-orbital
region. A PV blob, corresponding to a surface density ‘bubble’,
is created by the initial condition near the separatrices of the co-
orbital region, and experiences a baroclinic PV boost whenever it
passes by the planet via horseshoe turns. As the PV blob librates
at the co-orbital boundary, it introduces periodic surface density
asymmetries in front of and behind the planet, which translates to
sustained oscillatory co-orbital torques. The PV blob eventually
dissipates, possibly due to numerical diffusion and/or PV mixing in
the co-orbital region.

Increasing the disc metallicity at fixed stopping time, e.g.
Tstop = 10−3, Z = 1, leads to vortex formation in the co-orbital re-
gion. This introduces high-frequency variability in the disc torques.
In previous, pure gas, adiabatic simulations, co-orbital vortex for-
mation was attributed to the RWI associated with strong entropy
gradients at the separatrices (Paardekooper et al. 2010). In general
the RWI is related to extrema in PV and/or entropy profiles. In
isothermal, dusty discs the relevant quantity is the generalized PV,
V = (κ2/2��)(1 + �d/�g)2, which captures both the PV and ef-
fective entropy of isothermal dusty gas. Analysis of the V profiles
in the unstable cases show that prior to vortex formation, extrema
in V indeed develops in the co-orbital region.

We also consider two additional disc models: one with zero PV
gradient initially and a protoplanetary disc model with non-zero
gradients in PV, temperature, and initial dust-to-gas ratio. In the flat
PV disc, the torques immediately jump to the Lindblad torque and
does not change much after. This is consistent with the previous sim-
ulations, which show a PV boost occurs if there is an Eulerian PV
perturbation when a fluid parcel undergoes horseshoe turns. An ini-
tial PV surplus cannot develop if PV is globally flat. This simulation
shows that sustained oscillatory torques require a background PV
gradient. In the protoplanetary disc model, we again find sustained
torque oscillations, but at late times a high-frequency torque com-
ponent develops due to vortex formation in the co-orbital region.
However, this vortex appears to be transient, dissipating within the
simulation time-scale, leaving only the Lindblad torques to remain.

5.1 Implications of dusty disc–planet interaction

Our main result is that low-mass planets in dusty discs may expe-
rience extended periods of oscillatory torques acting on them. This
could lead to growth in the planet’s eccentricity. This effect requires
sufficiently high dust-loading and/or large particles. If a planet mi-
grates into the inner disc with high dust-to-gas ratio and large par-
ticles – a typical outcome of particle drift (e.g. Kanagawa et al.
2017) – then oscillatory torques may develop and introduce planet
eccentricity. Alternatively, once particles in the disc surrounding
the planet grows beyond some size, finite dust–gas coupling may
again introduce oscillatory torques.

We also find vortex formation in the co-orbital region in some
cases. The effect of co-orbital vortices on vortex formation is less
clear, and is best address through direct numerical simulations.

However, these vortices are expected to act as dust traps (Lyra &
Lin 2013), and may lead to additional planetesimal and hence planet
formation, which would further complicate the orbital migration of
the original planet.

5.2 Caveats and outlooks

Our simulations motivate the study of dust-rich disc–planet inter-
action in detail. In order to follow up the possible implications
discussed above, several improvements needs to be made in future
work.

We constructed special disc profiles in order to initialize our sim-
ulations in exact equilibrium. In fact, we mostly considered discs
without an initial pressure gradient, i.e. no particle drift. In gen-
eral, however, the disc may be evolving due to dust–gas interaction
(Kanagawa et al. 2017). Future studies should consider more gen-
eral, possibly non-equilibrium initial conditions. In particular, a
global particle and/or gas mass flux across the planet’s co-orbital
region will likely contribute to the desaturation of co-orbital torques
(McNally et al. 2017).

In this first study, we fixed the planet’s orbit and simply measured
the disc–planet torques. To see how a planet actually migrates in
response to these torques, specifically whether or not it can expe-
rience eccentricity growth, we require a live planet, i.e. an orbit
integrator. This problem, however, will likely require high numeri-
cal resolutions.

Future studies should also consider fully 3D, stratified disc mod-
els. This is because dust–gas drag – a key factor in the torque
evolution – depends on the local density (equation 3). In a 3D disc
the stopping time increases away from the mid-plane; while the
dust-to-gas ratio or local metallicity drops with height. This height
dependence may not be properly captured in our 2D disc mod-
els, in which we simply replace the densities by surface densities.
Three-dimensional disc models also allow for explicit modelling of
hydrodynamic turbulence such as that due to the Vertical Shear In-
stability (Nelson, Gressel & Umurhan 2013). This is expected to be
important for the co-orbital dynamics considered here as it provides
an effective viscosity. However, such 3D numerical simulations are
prohibitively expensive at the present time.
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APPENDI X A : DUST-TRAPPI NG AT
P L A N E TA RY G A P E D G E S

We simulate the response of a 2D, razor-thin dusty disc to massive
planets such that the disc structure in dust is significantly perturbed.
Here, for the disc parameters we use p = 1, q = −0.002 to obtain
a uniform dust-to-gas ratio of �d/�g = 0.01. As before we use
ξ = 1.001, so gas disc is effectively isothermal in both structure
and thermal response. The reference gas temperature is such that
hg0 = 0.05. Since �d � �g, there is no difference between the
true and dynamic (dust-modified) temperature. We set the reference
stopping time to Tstop = 0.007. This setup is similar to recent ex-
plicit dust-plus-gas simulations performed by Dong et al. (2017).
However, unlike Dong et al., we neglect gas viscosity and turbulent
dust diffusion.

The disc domain is R ∈ [0.4, 2.5]R0 and ϕ ∈ [0, 2π ] with resolu-
tion of NR × Nϕ = 384 × 768. As in Section 4, we use unperturbed
boundaries with radial buffer zones in R ∈ [0.4, 0.52]R0 and R ∈
[2.2, 2.5]R0.

A1 Dust rings

Fig. A1 shows the normalized gas and dust surface densities at
t = 700P0 for a planet of mass Mp = 3 × 10−5 M∗, or Mp = 10 M⊕
if M∗ = M�. While a single, shallow gas gap is carved with only
∼20 per cent depletion in gas; a double, deep dust gap is formed with
almost complete depletion. The dust displays a multiringed structure
associated with the gas gap edges and the co-orbital (horseshoe)
region of the planet. In particular, the co-orbital material itself shows
a double-ringed structure. These features are very similar to that
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Figure A1. Gas (top) and dust (bottom) response to an embedded planet
with mass of 10 M⊕ around a star of mass M�. The gas and dust surface
densities �d, g are normalized by their initial values.

obtained by Dong et al. (2017, see their fig. 1) in their two-phase
simulations.

A2 Dusty vortex

We repeat the above simulation with Mp = 3 × 10−4 M∗; equivalent
to 100 M⊕ or a Saturn-mass planet around a Solar mass star. Fig. A2
shows the gas and dust distribution at t = 500P0. For this planet
mass a partial gas gap forms, which subsequently becomes unstable
to the RWI (Lin & Papaloizou 2010), which leads to large-scale
vortex formation at the gap edges. The dust is efficiently trapped by
the vortices in both radius and azimuth (Lyra & Lin 2013), resulting
in a much higher concentration than the gas overdensity. The dust
gap is also wider than the gas gap, probably due to dust-collection
into the outer vortex.

APP ENDIX B: STREAMING INSTABILITY
WITH ON E FLUID

The streaming instability (SI) is an axisymmetric, linear dust-drag
instability (Youdin & Goodman 2005; Jacquet et al. 2011). SI relies
on the back-reaction of dust-drag on gas, and thus is most efficient in
dust-rich discs (ρd � ρg). This is especially true for tightly coupled,

Figure A2. Same as Fig. A1 but with a planet mass Mp = 100 M⊕.

small particles with Tstop � 1 (Carrera, Johansen & Davies 2015;
Yang, Johansen & Carrera 2017).

Linear SI growth rates may be calculated analytically from a full
two-fluid treatment of dusty gas (Youdin & Goodman 2005). In
the strong-drag limit, SI growth rates may also be obtained from
the one fluid, approximate framework considered here (LY17). This
provides a means to test the implementation of the diffusion-like
term to model dust–gas drag.

B1 Unstratified global equilibria

In order to compare with the analytical calculations of SI, we con-
sider axisymmetric, 3D discs but neglect vertical stratification in
the initial equilibrium. This is done by ignoring the z-dependence
of the gravitational potential.

The equilibrium density and velocity profiles physically represent
conditions near the disc mid-plane. We thus set

ρg = �g(R)√
2πHg(R)

∝ R−p+q/2−3/2, (B1)

for consistency with stratified discs considered in Appendix Sec-
tion C, and recall �g is given by equation (31).

The total density is ρ = ρg(1 + ε), and the initial dust-to-gas ratio
ε(R) is chosen to satisfy thermal equilibrium, ∂R (Rfdts∂RP ) = 0,
similarly to the razor-thin disc in Section 3.1. This results in the
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Figure B1. Growth of the streaming instability in run A (see Table B1).
The evolution in the maximum deviation from initial conditions are plotted
(black) and compared to the expected linear growth of SI (blue).

constraint
ε

(1 + ε)2 cs(R)ρξ−1
g (R) = constant (B2)

for power-law discs; assuming ∂RP �= 0, as required for SI (see
below). We thus set the dust-to-gas ratio via

ε(R)

[1 + ε(R)]2 = ε0

(1 + ε0)2

[
cs0

cs(R)

] [
ρg0

ρg(R)

]ξ−1

.

Then

d ln (1 + ε)

d ln R
= ε

1 − ε

{
q

2
+ (ξ − 1)

[
p +

(
3

2
− q

2

)]}
, (B3)

The special case of a uniform dust-to-gas ratio is only possible if

q = 2(ξ − 1)

ξ − 2

(
p + 3

2

)
for constant

ρd

ρg
. (B4)

We choose ξ = 1.001 and p = 1, and set q � −0.005 in accordance
with equation (B4) to obtain a constant ε.

The disc rotation profile is given via

R�2 = R�2
K + 1

ρ

dP

dR
. (B5)

Figure B2. Evolution of dust-to-gas ratio for run A with Tstop = 0.025
(τ s= 0.1) at 2.5 orbits (top, end of linear phase), 5 orbits (middle, satu-
rated state), and 10 orbits (bottom, end of simulation). Notice the inwards
migration of dust clumps due to the global radial pressure gradient.

SI requires particle drift in the initial equilibrium, which translates
to a non-zero radial pressure gradient. In the literature it is common
use the parametrization

η ≡ − 1

2ρgR�2
K

∂P

∂R
. (B6)

The reference temperature is chosen such that hg0 = 0.1, giving a
dimensionless pressure gradient η0 � 0.0125 for the fiducial disc
model.

B2 Simulation setup

We initialize the simulation with axisymmetric Eulerian perturba-
tions in Q = (ρ, v, P ) in the form

δ Q = Re
[

Q̃ exp i (kxR + kzz − σ t)
]
. (B7)

Here, Q̃ and σ are the complex amplitudes and frequency, respec-
tively; while kx, z are real wavenumbers. The dispersion relation
σ (kx, kz) and eigenvector are given in appendix D of LY17. We su-
perimpose eigenvectors to obtain standing waves in z, as described
by Youdin & Johansen (2007). We will refer to the dimensionless
wavenumber Kx, z ≡ kx, zη0R0 and growth rate S ≡ Im σ/�K0.

We carry out axisymmetric cylindrical (R, z) simulations. The
domain is [R0 ± 2λx, ±λz/2], where λx, z ≡ 2π /kx, z is the SI wave-
length. We apply periodic boundaries in z, but hold radial ghost
zones at their initial values. In addition, we damp variables towards
their initial values in the innermost and outermost 20 per cent of
the radial domain on a time-scale of tdamp = 10−2/s, where s is the
analytic SI growth rate. This treatment in radius is needed because
we adopt radially global disc models, while analytic SI solutions
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Table B1. Parameters for the streaming instability. Growth rates S are normalized by �K0. The spread in measured growth rates across variables, �Ssim, is
normalized by Ssim. The particle stopping time τ stop = Tstop(1 + ε0).

Run ρd/ρg Tstop (τ s) Kx, Kz Cells/λ S Ssim �Ssim Comment

A 3 0.025 (0.1) 30,30 64 0.4251 0.4437 0.5 per cent Figs B1 and B2
B 2 0.0033 (0.01) 80,20 128 0.1203 0.1212 7 per cent Fig. B3
C 3 0.001 (0.004) 160,40 128 0.1059 0.1134 12 per cent Fig. B3

Figure B3. Dust-to-gas ratio at the saturated state of SI in run B with
ρd/ρg = 2, Tstop = 0.0033 (top) and C with ρd/ρg = 3, Tstop = 0.001
(bottom).

assume periodicity in R. The extended radial domain with damping
minimizes the influence of boundary conditions.

Since SI requires high accuracy, for this problem we config-
ure PLUTO with piecewise parabolic reconstruction and third-order
Runge–Kutta time integration. We use at least 64 cells per λx, z,
corresponding to >103 cells per Hg. We impose a minimum dust-
fraction fd > 10−6.

B3 Results

The simulations are summarized in Table B1. These are defined
by the initial dust-to-gas ratio ε0, stopping time Tstop or τ stop, and
the perturbation wavenumbers Kx, z. We also give analytic growth
rates obtained from the one-fluid framework. We checked that these
growth rates are nearly identical to that obtained from a full two-fluid
analysis. We measure growth rates in the simulations by monitoring
maximum deviations from equilibrium in |R − R0| < λx for each
fluid variable. We report the mean value Ssim, and its spread across
the variables, �Ssim. We find good agreement between simulations
and the analytic growth rates.

Run A is same as the ‘linA’ code test used by other authors to
benchmark their dusty-gas algorithms (Youdin & Johansen 2007;
Balsara et al. 2009; Bai & Stone 2010; Miniati 2010; Yang & Jo-
hansen 2016). Fig. B1 shows exponential growth of hydrodynamic
variables and Fig. B2 shows evolution of the dust-to-gas ratio. In
the saturated state the dust-to-gas ratio ranges from zero to few 10s,
showing strong particle clumping. This is consistent with previous
numerical simulations with similar dust parameters (Johansen &
Youdin 2007, their run ‘AC’).

Runs B and C adopt smaller Tstop and are shown in Fig. B3.
We again find agreement with analytic growth rates in the linear
phase, although the spread in Ssim increases with smaller Tstop. In
the saturated state, Run B (Tstop = 0.0033) still develop voids with
ρd/ρg ∼ 0, but Run C (Tstop = 0.001) only develop order-unity fluc-
tuations in ρd/ρg. Neither runs show strong particle clumping within
the simulation time-scale. This is consistent with recent simulations
of SI for small particles carried out by Yang et al. (2017). These
authors find small particles only clump after integration time-scales
� O(102) orbits.

APPENDIX C : DUST-SETTLING IN
PROTOPLANETA RY DI SCS

We now consider vertically stratified discs. In the presence of verti-
cal stellar gravity, dust settles towards the mid-plane of a protoplan-
etary disc on a time-scale of tsettle ∼ 1/�2ts (Takeuchi & Lin 2002).
For Tstop = 10−3 we expect tsettle � 160 orbits. We demonstrate our
hydrodynamic model of dusty gas reproduces this basic result.

Figure C1. Dust-settling in a vertically stratified disc. The dust-to-gas ratio
(scaled by 100) is shown. The reference stopping time is Tstop = 10−3.
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C1 Stratified disc model

We initialize the disc with an axisymmetric, steady state defined by

R�2 = R�2
K

(
1 − 3

2

z2

R2

)
+ 1

ρ

∂P

∂R
, (C1)

0 = z�2
K + 1

ρ

∂P

∂z
. (C2)

Given a dust-to-gas ratio distribution ε(R, z), we may solve equa-
tions (C1) and (C2) to obtain ρ(R, z) and �(R, z). We use the
thin-disc approximation for the star potential (equation13) in order
to obtain analytic expressions below.

We set the initial dust-to-gas ratio to

ε(R, z) = εmid(R) × exp

(
− z2

2H 2
ε

)
. (C3)

Here and below the subscript ‘mid’ indicates the mid-plane value,
taken from the unstratified profiles described in Appendix B1. The
characteristic thickness in the dust-to-gas ratio, Hε , is defined via

1

H 2
ε

≡ 1

H 2
d

− 1

H 2
g

, (C4)

where the dust layer thickness Hd is parametrized by δ ≡ Hd/Hg < 1.
As δ → 1 the dust becomes perfectly mixed with the gas, giving a
vertically uniform dust-to-gas ratio.

Using equation (C3) we can integrate equation (C2) (taking the
polytropic index ξ = 1) in z to obtain

ρg = ρg,mid exp

{
− z2

2H 2
g

− εmid
H 2

ε

H 2
g

[
1 − exp

(
− z2

2H 2
ε

)]}
. (C5)

The gas vertical structure is effectively Gaussian, since the z-
dependence in the second term is weak (especially for well-mixed
dust with Hε → ∞). The total density is ρ = ρg(1 + ε) with ε given
by equation (C3).

The disc orbital frequency is obtained from equation (C1),

�(R, z)=�K

[
1− 3

2

z2

R2
+ P

ρ (R�K)2

(
ξ
∂ ln ρg

∂ ln R
−q

)]1/2

. (C6)

Note that there is generally vertical shear, ∂z� �= 0. This arises
from a radial temperature gradient and/or a radial gradient in the
dust-to-gas ratio (LY17).

By construction these initial conditions do not satisfy thermal
equilibrium,

1

R

∂

∂R

(
Rfdts

∂P

∂R

)
+ ∂

∂z

(
fdts

∂P

∂z

)
�= 0.

However, since εmid is chosen to minimize radial dust evolution (Ap-
pendix B1), this setup allows us to focus on vertical dust-settling.

C2 Simulations

For this problem we adopt an axisymmetric spherical grid (r, θ )
with r ∈ [0.6, 1.4]R0, tan (π /2 − θ ) ∈ [ − 2, 2]hg0, and hg0 = 0.05.
We use a resolution of Nr × Nθ= 840 × 240, corresponding to
about 50–60 cells per Hg at unit radius. We use logarithmic spacing
in r but uniform spacing in θ . We return to linear reconstruction and
second-order Runge–Kutta time integration, as used in the main
text.

For the initial disc profile we use p = 1, q � −0.005, and
Hd = 0.99Hg so the initial dust-to-gas ratio ε � 0.01 is nearly
uniform both radially and vertically. We choose |q| ∼ 0 to mini-
mize vertical shear and associated instabilities (Nelson et al. 2013;
Barker & Latter 2015; Lin & Youdin 2015), which would stir up
particles and oppose dust-settling (Flock et al. 2017).

We taper ε to zero near radial boundaries in the initial setup, and
apply reflective boundary conditions in both r and θ .

Fig. C1 shows the evolution of ρg/ρd. As expected the dust settles
to a thin layer (∼0.2Hg) on a time-scale of ∼100 orbits. Settling
occurs outwards since more dynamical times have elapsed at smaller
radii at a given snapshot. Notice early in the settling process the dust-
to-gas ratio peaks near the surface of the dust layer. These results
are similar to dust-settling simulations performed by Price & Laibe
(2015).
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