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Abstract

Under the right conditions, the streaming instability between imperfectly coupled dust and gas is a powerful
mechanism for planetesimal formation as it can concentrate dust grains to the point of gravitational collapse. In its
simplest form, the streaming instability can be captured by analyzing the linear stability of unstratified disk models,
which represent the midplane of protoplanetary disks. We extend such studies by carrying out vertically global
linear stability analyses of dust layers in protoplanetary disks. We find that the dominant form of instability in
stratified dust layers is the one driven by the vertical gradient in the rotation velocity of the dust—gas mixture, but
also requires partial dust—gas coupling. These vertically shearing streaming instabilities grow on orbital timescales
and occur on radial length scales ~ 1073Hg, where H, is the local pressure scale height. The classic streaming
instability, associated with the relative radial drift between dust and gas, occurs on radial length scales ~ 102H, .
but has much smaller growth rates than vertically shearing streaming instabilities. Including gas viscosity is
strongly stabilizing and leads to vertically elongated disturbances. We briefly discuss the potential effects of
vertically shearing streaming instabilities on planetesimal formation.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Hydrodynamics (1963); Astrophysical fluid
dynamics (101); Planet formation (1241); Planetesimals (1259)

https://doi.org/10.3847/1538-4357 /abcd9b

CrossMark

Stratified and Vertically Shearing Streaming Instabilities in Protoplanetary Disks

1. Introduction

The formation of planetesimals from millimeter- to centimeter-
sized dust grains or pebbles in protoplanetary disks (PPDs) is a
key stage in planet formation (Birnstiel et al. 2016). Neither
pairwise collisions nor gravitational forces lead to effective growth
on pebble scales (Chiang & Youdin 2010; Blum 2018). However,
if a swarm of solids can be made sufficiently dense relative to the
ambient gas, then it can undergo direct self-gravitational collapse
into kilometer- or larger-sized planetesimals (Goldreich & Ward
1973). The critical dust-to-gas ratio for collapse is >1 (Shi &
Chiang 2013). This should be compared to the typical value of
~1% expected uniformly throughout a newly born PPD (Testi
et al. 2014). Thus, an efficient mechanism is needed to first
concentrate dust grains. These include dust settling, particle,
trapping by pressure bumps, and dust—gas instabilities (Johansen
et al. 2014).

The streaming instability (SI; Youdin & Goodman 2005;
Youdin & Lithwick 2007) is one such candidate. The SI is a
linear instability in rotating flows of partially coupled dust and
gas that mutually interact through frictional drag—conditions
natural in PPDs—which can amplify dust-to-gas ratios by
orders of magnitude and trigger gravitational collapse (Johan-
sen et al. 2009), although the SI itself does not require self-
gravity. In the often considered, idealized case of a laminar disk
with a monodisperse dust population, the SI is a robust process
and has thus received considerable attention as the de facto
mechanism for planetesimal formation.

The SI has undergone intense studies through numerical
simulations (Johansen & Youdin 2007; Bai & Stone 2010a;
Yang & Johansen 2014; Yang et al. 2017). Modern simulations
have generalized the SI to consider magnetic fields (Balsara et al.
2009; Tilley et al. 2010; Yang et al. 2018), various geometries
(Kowalik et al. 2013; Schreiber & Klahr 2018), multiple grain
sizes (Bai & Stone 2010b, 2010c; Schaffer et al. 2018; Benitez-
Llambay et al. 2019; Krapp et al. 2019; Zhu & Yang 2020),
turbulence (Gole et al. 2020; Schéfer et al. 2020), self-gravity

(Simon et al. 2016; Schifer et al. 2017; Li et al. 2019), pressure
bumps (Carrera et al. 2020), etc. These efforts are necessary to
understand planetesimal formation in realistic PPDs. Indeed,
sophisticated simulations show that planetesimals formed
through the SI have properties consistent with those in the solar
system (Nesvorny et al. 2019).

On the other hand, a physical understanding of the SI
through analytical studies has progressed more slowly. Jacquet
et al. (2011) showed that the SI is driven by a process of
runaway dust-trapping by pressure bumps, while Lin & Youdin
(2017) gave a thermodynamic interpretation of the SI in which
partial dust—gas coupling leads to “PdV” work that acts to
amplify oscillations.

Recently, Squire & Hopkins (2020) presented detailed models
of Youdin & Goodman’s (2005) classic SI, in which the mutual
interaction between epicyclic motions and the relative radial dust
—gas drift in a PPD leads to growing perturbations. In fact, for
small dust-to-gas ratios, the classic SI belongs to a broader class of
“resonant drag instabilities” (RDIs; Squire & Hopkins 2018a,
2018b; Zhuravlev 2019) generic to dusty gas in which the relative
dust—gas motions resonate with a wave mode in the gas. The
classic SI is thus expected in PPDs as dust and gas naturally
exhibit a relative radial drift, as the gas rotation is partially
supported by a (negative) radial pressure gradient (Whipple 1972;
Weidenschilling 1977).

The classic SI can be captured in relatively simple disk
models, such as those employed by Youdin & Goodman, who
considered a small region near the disk midplane. In this limit,
the vertical gravity from the central star can be ignored, which
produces a uniform vertical disk structure. These “unstratified”
disk models allow significant simplifications for analyses of the
linear SI and generalizations thereof, which include the effect of
pressure bumps, multiple species, and turbulence (Auffinger &
Laibe 2018; Krapp et al. 2019; Chen & Lin 2020; Jaupart &
Laibe 2020; Paardekooper et al. 2020; Pan 2020; Umurhan et al.
2020).
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However, PPDs do have a vertical structure. Dust settling,
which leads to the formation of a dense particle layer about the
disk midplane (Dubrulle et al. 1995), is often considered as a
prerequisite to trigger the SI, as it requires dust-to-gas ratios
of order unity or above to operate efficiently (Youdin &
Goodman 2005). Dust settling naturally produces a stratified
dust layer. In fact, stratified simulations are now common, but
the linear SI has not been examined in stratified disks. Filling
this gap will be helpful in understanding how the SI operates in
realistic PPDs.

The purpose of this work is to generalize previous studies of
the linear SI to account for the vertical structure of dust layers
in PPDs. To this end, we analyze the stability of vertically
global, radially local models of dusty disks. We employ the
standard, two-fluid description of dusty gas, as well as a
simplified “one-fluid” model (Lin & Youdin 2017) to verify
some of our calculations.

Our main result is that in stratified disks, the vertical
variation in the azimuthal velocity of the dusty gas (or vertical
shear) provides a significant source of “free energy” that can be
accessed by partial dust—gas coupling, which results in
instability. We typically find that these vertically shearing
streaming instabilities (VSSIs) dominate over classic Sls, so the
former should be the first to develop in settled dust layers. Our
study confirms and expands upon an earlier work from Ishitsu
et al. (2009), who used direct simulations to study the effect of
vertical dust density gradients on the evolution of dust layers.

This paper is organized as follows. By way of introducing
notation, we first provide order-of-magnitude motivations to
examine the SI in stratified disks in Section 2. We then describe
our framework and disk models in Section 3. Results from our
linear stability analyses are presented in Section 5 for three
examples: a high dust density layer, a low dust density layer,
and a viscous disk. We discuss the implications of our findings
in Section 6 and conclude in Section 7. A list of frequently used
symbols is summarized in Appendix A.

2. Physical Motivation
2.1. Geometric Considerations

The classic SI of Youdin & Goodman (2005), discovered in
unstratified disk models, is driven by the relative radial drift
between dust and gas,

2St(1 + e)nrQd

- 1
S+ (1 + €)? )

Vdrift =

(Nakagawa et al. 1986), where the Stokes number St is a
dimensionless inverse measure of the strength of the dust—gas
coupling (and is proportional to the grain size), € is the dust-to-
gas volume density ratio, 7 is the cylindrical distance from the
star, Q = \GM,/r? is the Keplerian frequency (M, and G
being the stellar mass and gravitational constant, respectively),
and 7 is a dimensionless measure of the global radial pressure
gradient defined as
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where p, is the gas density and P is the gas pressure. PPDs
have 1 ~ O(hgz), where h, = H,/r is the gas disk aspect ratio
and H, is the pressure scale height, with i, ~ 0.05.

Lin

We thus expect the SI to have characteristic length scales
~ nr, which is significantly shorter than the global radial
length scales of typical PPD disk models (~r). The SI can thus
be considered as a radially localized phenomenon. However,
the situation differs in the vertical direction.

In realistic PPDs, dust settles into a layer of thickness Hy,
which can be related to the midplane dust-to-gas mass density
ratio ¢y and the metallicity

Z = 24 Hq

3

(Johansen et al. 2014), where X4, are the dust and gas surface
densities, respectively. The SI operates on dynamical time-
scales when ¢y 2 1 (Youdin & Goodman 2005). To meet this
condition at standard solar solid abundances of Z ~ 0.01, dust
layers should be thin, Hq =~ 0.01H,. For an SI mode with
vertical length scale nr to exist, it should fit inside the dust
layer, or

= _ L)<t 4
X H, U(Z)N, 4)

where ) = 1/h, and PPDs typically have % >~ 0.05.

For a settled dust layer with ¢y >~ 1 in a disk with standard
metallicity Z ~ 0.01, we find y = 5, violating the above
condition. Moreover, when gas viscosity and particle diffusion
are considered, SI modes have vertical length scales compar-
able to H, (Umurhan et al. 2020), while further restricting
vertical length scales to < Hjy results in negligible growth rates
(Chen & Lin 2020). These findings call for stratified analyses.

2.2. Energetic Considerations

Dusty PPDs possess vertical shear: the settled, dust-rich
midplane rotates closer to the Keplerian speed 7€) than the gas-
dominated, pressure-supported disk away from the dust layer,
which has a sub-Keplerian rotation of (1 — n)r{) because
1 > 0 usually. Such a vertical variation of the disk’s rotation
speed is an important source of free energy (as borne out in our
calculations).

Now, the difference in the azimuthal velocity of the dusty
midplane and the overlying gas is Av, ~ 7rS). For a dust layer
thickness Hy, we can thus estimate the vertical shear rate within
the layer as nrQ)/Hy = x€. For small grains, this vertical shear
rate is larger than the relative radial drift rate vgsq/nr by a
factor of St™' > 1.

We can also compare vertical shear to the vertical settling of
grains, as the latter can trigger a “dust-settling instability” (DSI;
Squire & Hopkins 2018b; Krapp et al. 2020). Taking the
typical settling speed of a dust grain to be |vy,| ~ StHy{2
(Takeuchi & Lin 2002), we find |Avs /vy, | ~ feo/(StZ). For
PPDs, with ¢g ~ 1 and f) ~ Z ~ 0(1072), this ratio is ~ Stfl,
i.e., large for small grains.

The above estimates suggest that for small grains, vertical
shear is a much larger energy source than the relative radial drift
or dust settling. Indeed, in the limit of St — 0, the classic SI and
DSI are suppressed and vertical shear drives nonaxisymmetric
Kelvin—Helmholtz instabilities (KHIs; Chiang 2008; Lee et al.
2010).

In this work, we consider axisymmetric disturbances so that
KHIs are not applicable. Lin & Youdin (2017) showed that
axisymmetric dusty disks are generally stable in the limit
St — 0, however large the vertical shear rate. This is due to
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stabilization by dust-induced, effective buoyancy forces (see
also Lin 2019).

However, the above result ceases to be valid for St = 0,
because in this case, dust and gas are no longer perfectly
coupled, and they can stream past one another, which
diminishes the stabilizing effect of dusty buoyancy. This is
similar to how rapid cooling can enable the “vertical shear
instability” (VSI) in gaseous PPDs (Nelson et al. 2013; Lin &
Youdin 2015) by eliminating gas buoyancy. (For the gaseous
VSI, vertical shear originates from the disk’s radial thermal
structure.)

We can therefore expect in a stratified, dusty disk the free
energy associated with vertical shear, here a result of dust
settling, to be accessible through an instability with nonvanish-
ing particle sizes. Indeed, we will find such instabilities are the
dominant modes in stratified disks. We refer to them as VSSIs,
because both vertical shear and dust—gas streaming motions
are necessary.

3. Basic Equations

We consider a non-self-gravitating, unmagnetized PPD
comprising gas and a single species of dust grains around a
central star of mass M,. The gas component has density,
pressure, and velocity fields (pg, P, V,). We assume an
isothermal gas so that P = ¢ p, With a constant sound speed
cs = H,f.

We treat the dust population as a pressureless fluid with
density and velocity (pg, V4). The dust and gas fluids interact
via a drag force parameterized by a stopping time T, (see
below). The fluid approximation for dust is then valid for well-
coupled, small grains such that 7, < Q™' (Jacquet et al. 2011).

~

3.1. Two-fluid, Radially Local, Axisymmetric Disk Model

We study radially localized disturbances in the aforemen-
tioned dusty disk using the shearing box framework (Goldreich
& Lynden-Bell 1965). The shearing box is centered about a
fiducial point (rg, ¢, 0) in cylindrical coordinates on the star,
which rotates at the reference Keplerian frequency Q(r9) = Qo,
ie, ¢g= Qo Cartesian coordinates (x,y,z) in the box
correspond to the radial, azimuthal, and vertical directions in
the global disk. The radial extent of the box is assumed to
be much smaller than ry, so that curvature terms from the
cylindrical geometry can be ignored. Keplerian rotation is
then approximated as the linear shear flow —(3/2)Qpxy. We
define vy, = Vyo — (ro — 3x/2)0y as the local dust and gas
velocities in the shearing box relative to this linear shear flow.
We assume axisymmetry throughout, so that 9, = 0.

The governing equations for the dust component in the
shearing box are

)
DLV () =V - [ngv &]] ®)
ot Py
My Uy = 200 vy % — Lo, 5 -2z
ot 2
1
— =0 — W), (6)
Ts

where D is a constant diffusion coefficient defined below. The
third term on the right-hand side (rhs) of Equation (6) corresponds
to the vertical component of the stellar gravity in the thin-disk
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limit. The last term on the rhs corresponds to gas drag, the
strength of which is characterized by the stopping time 7.

For the gas, we include the effect of a global radial pressure
gradient in the shearing box by writing

VP — VP — 2nroS % p, %, (7

where 19 = n(r = ry, z = 0) and 7 is defined by Equation (2).
That is, the global radial pressure gradient is modeled as a
constant forcing. We then reinterpret P as pressure fluctuations
in the shearing box. The governing equations for the gas
component are then

Ip, v —0 8
E + : (pgvg) =Y ®)
0
e} + vy - Vg =200 & — &Vgxf’ - 2
ot ) 2 Py
. 1
+ 20y Bk + —V - T
Py
— Rz — S — ). ©)

Ts

The fifth term on the rhs of Equation (9) represent viscous
forces, where

T= pgu[va + (va)Jr — %IV . vg] (10)

is the viscous stress tensor and v is a kinematic viscosity,
prescribed later. The final term on the rhs is the back-reaction
of dust drag onto the gas.

The basic Equations (5)—(6) and (8)—(9) extend those used by
Chen & Lin (2020) with the addition of vertical gravity, which
themselves are extensions of those in Youdin & Johansen (2007)
with the addition of dust diffusion and gas viscosity. We solve
Equations (5)—(6) and (8)—(9) in full to obtain equilibrium states,
then solve their linearized versions to study the stability of
said equilibria. Both problems are one dimensional in z. For
numerical solutions, we consider the half-disk z € [0, zn.x] by
imposing symmetry conditions at the midplane. Details are given
in Sections 3.5.1-3.5.2 and Section 4. Hereafter, we drop the
subscript “0” for clarity. Below, H, refers to the pressure scale
height at the reference radius.

3.2. Dust—Gas Drag

The stopping time 7y is the timescale for a dust particle to
reach velocity equilibrium with its surrounding gas. In this
work, we take 7, to be a constant parameter for simplicity. It is
convenient to define the dimensionless stopping time or Stokes
number,

St = Q. 1D

We consider well-coupled, or small dust grains with St < 1.

Physically, St depends on the particle and gas properties,
such as grain size (a), internal density (p.), and gas density
(Weidenschilling 1977). To put our calculations in context,
consider grains in the Epstein regime in a minimum-mass solar-
nebula-like (MMSN) disk described in Chiang & Youdin (2010).
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We then find

3/2
St = 0.019F*1( ! ) L (i) (12)
30 au g cm ™3 J\mm

where F is a mass scale relative to the standard MMSN (F = 1).
We are mostly interested in millimeter- or submillimeter-sized
grains with internal density 1 g cm > at tens of astronomical
units in MMSN-like disks.

3.3. Dust Diffusion

We include dust diffusion to allow a stratified equilibrium
state to be defined, in which dust settling is balanced by dust
diffusion. Without dust diffusion, particles would continuously
settle and no steady state can be established for standard
stability analyses. Dust diffusion is usually attributed to gas
turbulence (e.g., Youdin & Lithwick 2007; Laibe et al. 2020),
which is often modeled as gas viscosity. We thus parameterize
dust diffusion in terms of a gas viscosity, although for the most
part we ignore viscosity in the gas equations.

We model dust diffusion via the constant parameter ¢ such
that

D = bc Hy, 13)
with § given by
2
_ 14 St+4St (14)
(1 + st?)?

(Youdin & Lithwick 2007; Youdin 2011), where « is an input
constant turbulent viscosity parameter defined below. In
practice, § >~ « because we consider small grains.

3.4. Turbulent Viscosity

When considered, we model gas turbulence via a viscous
stress tensor (see Equation (10)) and adopt the standard alpha
prescription (Shakura & Sunyaev 1973) such that the kinematic
viscosity is

v = ac,HyLesam (15)
Pg

where pgcqm(z) denotes the equilibrium gas density, derived
below. We use this prescription so that the dynamic viscosity pgv/
is a fixed function of space, which avoids viscous overstabilities
that could complicate results (Latter & Ogilvie 2006; Lin &
Kratter 2016).

3.5. Two-fluid Equilibria

We seek steady, horizontally uniform equilibria with
0,=0,=0. The gas continuity equation then implies
Vg, = 0. All other are quantities are nonzero and z dependent,
€.8., Pg = Pg,eqm(2). For clarity, hereafter we drop the subscript
“eqm” on the equilibrium fields.

3.5.1. Vertical Equilibrium

The equilibrium dust mass and vertical momentum equations
are

dlnezﬁ’ (16)
dz D

Lin
dlnp, e
2 g _ 2
¢ = —yy, — %z, 17
S dZ St dz ( )
dvdz ) Q
v, = = 07 — —vy,, 18
dz dZ St dz ( )

where we recall € = pq/p,. For constant St, these may be
solved exactly to yield

g z*
E(Z) = €p eXp[%F;]’ (19)
02D = proexp| (e — o) — < 20)
. 7 st 20 |
Ve (2) = — 5280, 21

where €9, pgo is the midplane dust-to-gas ratio and gas density,
respectively, and

= ﬁ(l 1= 4St2>. 22)

We thus require St < 0.5. Note that § ~ St' for the small
particles considered in this work (St < 1). We also consider
weak diffusion such that 6 < St. The dust layer thickness can
then be approximated by

5
Hy= |—2—H 23
TN+ st ¢ 23)

(Dubrulle et al. 1995; Zhu et al. 2015). The local metallicity is

ff:o Padz _ Sq
f_o; pydz S

In practice, we adjust €, until a specified value of Z is obtained.
However, Equations (3) and (23) also give an adequate
estimate, ¢y ~ Z./St/§. The vertical structure is then com-
pletely determined.

Zz

(24)

3.5.2. Horizontal Equilibrium

The equilibrium horizontal momentum equations are

ded;—:‘ = 2Qvg, — %(de — Ver)» (25)
vdzddiz” = T Sy~ ), 26)
0 = 2Qvy, + 20Pr — %(Vgx — Vo) + pigdiz(pg d;ix),
@7)
0=~ = Sy — ) + pigdiz(pgddij) 28)

with €(z), py(z), and vy4(z) given by Equations (19)—(21). The
horizontal velocity profiles must, in general, be solved
numerically subject to appropriate boundary conditions. How-
ever, for |z — oo and thus € — 0, the dust and gas equations

! This can been seen by performing a Taylor expansion of the numerator in
Equation (22).
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decouple, and we obtain
2StnrQ)

limvg, = — s 29
e—0 b 1+ St2 ( )
nrel
limvy, = — s 30
e—0 d) 1 —+ St2 ( )
lim vy, = 0, (31)
e—0
lim vy, = —nre2, (32)
e—0

which are constants. These correspond to a sub-Keplerian gas
flow that does not feel the dust drag, while the dust drifts
inwards in response to gas drag. Equations (29)-(32) are
consistent with the unstratified solutions of Nakagawa et al.
(1986).

When gas viscosity is ignored, we impose Equations (29)
and (30) at a finite height z = zp,x such that ¢ < 1. When gas
viscosity is included, we 1mpose Equations (29)—(32) at
Z = Zmax, as well as vg'x(O) = gy(O) = 0, where / denotes d/dz.

3.6. One-fluid Models

We also employ the “one-fluid” description of dusty gas
(Laibe & Price 2014; Price & Laibe 2015; Lin & Youdin 2017)
to confirm selected results. In this framework, we work with the
total mass p and the center-of-mass velocity v, of the dust-plus-
gas mixture, which is treated as a single, ideal fluid subject to a
special cooling function. This approximation is valid for small
particles with St < 1. Our one-fluid formulation includes dust
diffusion, but without gas viscosity (see Lovascio & Paarde-
kooper 2019). Details are given in Appendix B.

4. Linear Problem

We consider axisymmetric Eulerian perturbations of the
form

bpy(2)exp (ikyx + ot), (33)

where k, is a (real) radial wavenumber taken to be positive
without loss of generality, and o is the complex frequency or
eigenvalue,

oc=s5 — iw, (34)

where s is the real growth rate and w is the oscillation
frequency. We also refer to the complex amplitudes such as
0pe(z) and their normalized versions (e.g., 6py/p,) as the
eigenfunctions. The initial perturbation in real space is then
obtained by taking Re [6p, exp (ik,x)]. Similar definitions apply
to other variables.

The linearized equations for the dust fluid read

/
2P + iky ( dx(s— + ov, ) + —(vd,éﬁ + 5vdz)
P4 Pd Pd Pd

opa) 0
de(ﬁ) +V dz Pa +6dz Dk)?é_g
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TOvax + ik Ve Ovax + Vi OVa: + Va6V,

= 2Q0vqy — %(5\@ — OVer)s (36)
o6Vay + ikyvaxbvay + vd/y(SvdZ + V4, 6véy

Q Q
= —?61@( - §((‘5vdy — bvgy), (37)

. ! !
00Vay + ihyVay 6va; + vy, Ova, + var Ovy,

Q
= —§(6vdz — 6vgr), (38)

and those for gas are

o op, Py
—= ik Ve — + Ovpe |+ v + O =0, (39)
pg Pg Py
. 2 5pg br visc
TVgy + Ky Vgy OVgr + V, 6vg = 2Q0vy, — ikycg — + OF)" + OF™,

Py

(40)

0bvey + ik Vg Ovgy 4V, —Eévgx + cﬁFybr + OF)™,

(41)

5ng =

op, '
06V + ki Vg OV = _Csz(p_g] + (5Ffr + (5FZViS°, (42)
g

where the linearized back-reaction force is
6P = fﬂ[(vg R LA - 5vd)], 3)
St €
and the components of the linearized viscous forces are

N 4 1
SFY — V[(svg/; — KIS+ kO
/

P
+ _g(6vg'x + ikxévgz)]

Py

/

P op,

—v g’;+—gvg' —=, (44)
Py

/
~ p
(SFVVISC = V|f5Vé; + —gévév — k)? 6ng]

g

/

Py , |9p

- V[v&y + £ gy] —=, (45)
g g

) 4 1.
or2 —o| 20— o + Sk,

/

[
+ ( v, — %ikxévgx) (46)
Py 3

(Lin & Kratter 2016). We remark that one can differentiate
the gas continuity Equation (39) to eliminate 6vg'é from the

expression of 6F,.

In practice, We solve for the perturbation to the dust-to-gas
ratio instead of the dust density perturbation, which are related
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by

) de  Op
a0 L _pw 47)
pd € pg
Note that for strictly isothermal gas, we have W = 6p,/p, =
6P/ P.
The linearized equations may be written in the form

Lg = og, (48)

where £ is an 8 x 8 matrix of linear differential operators and
g =[W, éw, O, &wi]". When supplemented with appropriate
boundary conditions (see below), this constitutes an eigenvalue
problem for L.

4.1. Boundary Conditions

We consider modes symmetric about the midplane such that
W'(0) = Q'(0) = 61, (0) = 6v,(0) = 61, (0) = 0,  (49)

where v, is the center-of-mass velocity; see Equation (B2). At
the top boundary, we impose

W (Zmax) = Q(Zmax) = 0. (50)

When gas viscosity is included, we additionally impose
8V, (0) = 8V, (0) = SV (Zmax) = OV (Zmax) = 0. (51)

We generally find that dominant modes have amplitudes that
maximize off the disk midplane and decay toward the domain
boundaries, as found by Ishitsu et al. (2009) in direct
simulations. As such, boundary conditions are unlikely to
modify our main findings.

4.2. Numerical Method

We use DEDALUS (Burns et al. 2020), a general-purpose
spectral code for solving partial differential equations, includ-
ing the linear eigenvalue problem described above. The
eigenfunctions are expanded in Chebyshev polynomials 7,
up to order n = N — 1, and the domain is discretized into N
points corresponding to the roots of Ty. Unless otherwise
stated, we take Zyax =~ SHy.

We use N = 1024 to compute the background disk
structure” and N = 384 for the linearized equations. For the
latter, DEDALUS transforms Equation (48) into a generalized
matrix eigenvalue problem and solves it via the SciPy package
(see Section 9D of Burns et al. 2020). This directly yields the
eigenvalues o and the associated eigenfunctions.

For the eigenvalue problem, we also use the EIGENTOOLS®
package to filter out spurious numerical solutions due to the
discretization. This is done by comparing eigenvalues obtained
from different vertical resolutions and only keeping those
within some tolerance (here 10~°), i.e., only physical solutions
that converge with respect to N, are kept. See Barker & Latter
(2015) for a similar treatment. We also filter out unphysical
solutions with large growth rates compared to {2 (Lin &
Youdin 2015).

2 In the one-fluid formulation, we use approximate analytic equilibrium

solutions; see Appendix B.
3 https://github.com/DedalusProject/eigentools
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Example source codes for used this work may be obtained
from the author’s GitHub repository.*

4.3. Units and Notation

We use normalized units such that ¢, = H, = 2 =1 and
quote the dimensionless radial wavenumber K, = k. H,. It turns
out that only the reduced pressure-gradient parameter ) = nr/H,
is relevant. Eigenfunctions are normalized such that 6pq/pg = 1
at its maximum amplitude. For clarity, in plot labels we drop the
subscripts “d,” “g,” and “c” when collectively referring to the
dust, gas, and center-of-mass velocity fields, respectively.

We quote 6 to distinguish models in which only dust
diffusion is included, from models wherein corresponding
viscous terms are also included in the gas momentum
equations, in which case we quote a.

5. Results

We present results for a high dust density layer (Section 5.1),
a low dust density layer (Section 5.2), and a viscous disk
(Section 5.3). For a given set of disk parameters and K,, solving
the linearized equations accounts for all vertical structures
permitted by the boundary conditions and the finite resolution.
This can result in a large number of modes. We are interested in
unstable modes as they will dominate over decaying ones in a
real disk. Thus, solutions with s < 0 are discarded, and we focus
on those with the largest growth rate s = sp,x at a given K,.
Table 1 lists, for each case, approximately” the most unstable
mode over 10> < K, < 10* (based on two-fluid calculations).

5.1. Case A: High Dust Density Layer

We first present a fiducial case with well-settled dust. Here,
we ignore gas viscosity but include particle diffusion. This
enables a comparison between the two-fluid and one-fluid
frameworks, because the latter does not include gas viscosity.
We choose Z = 0.03, # = 0.05, St = 102, and 6 ~ 10 . This
gives Hy >~ 0.01H,. The equilibrium disk profiles are shown in
Figure 1.

Figure 2 shows the maximum growth rate and corresponding
frequencies for case A for K, = 100-10*. Growth rates increase
with K, and maximizes around K, ~ 3600. We find two classes
of unstable modes: for K, < 200, the oscillation frequency w ~
and is constant, while for K, 2 200, oscillation frequencies are
negative and increase in magnitude. We find good agreement
between the one- and two-fluid results, giving confidence that
these are physical solutions.

Example eigenfunctions from the above modes are shown in
Figure 3. We find that with increasing K,, unstable modes
become increasingly localized about z ~ 0.015H,. Notice that
there is little perturbation in the gas density for either mode,
which indicate that they are nearly incompressible.

5.1.1. Pseudo-energy Decomposition

In order to identify physical origin of the above instabilities,
we follow Ishitsu et al. (2009) and examine the energy-like
quantity Uy = E?Zl U; associated with each mode, as
described in Appendix C. The contributions U; include vertical
shear in the equilibrium velocity field (U;, which is dominated

4 https://github.com /minkailin /stratsi

Due to the finite range and sampling in K, space.
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Table 1
Selected Unstable Modes in Stratified Dusty Disks
Case il V4 St o = 6) Viscosity" kAHg/lO3 Smax /2 w/Q Comment
A 0.05 0.03 1072 10°° no 3.593814 1.155043 —0.8250615 high dust density layer; Figure 2
0.01 0.03 1072 1076 no 5.994843 0.3267454 —0.1839234 smaller pressure gradient; Figure 6
0.1 0.03 1072 1076 no 3.593814 1.724942 —1.858679 larger pressure gradient; Figure 6
0.05 0.03 10°? 10°° no 10 0.3901075 —0.05611060 smaller particle; Figure 7
0.05 0.03 107" 10°° no 0.8254042 1.463588 —4.087298 larger particle; Figure 7
0.05 0.01 1072 10°° no 5.994843 0.9145120 —0.4717328 smaller metallicity, Figure 9
0.05 0.1 1072 10°° no 3.593814 1.308362 —1.703580 larger metallicity; Figure 9
B 0.05 0.03 1073 1073 no 10 0.06512705 —0.01026995 low dust density layer; Figure 11
C 0.05 0.01 1072 1077 yes 1.112355 0.6007165 —0.9712429 viscous disk; Figure 15
Note.

 Denotes whether or not viscous terms are included the gas momentum equations.

Z=0.03, St=1e-02, 6=1e-06

by the azimuthal component U,,), vertical dust settling (Us),
pressure forces (Us), dust—gas relative drift (U,), buoyancy

% = (Us), and viscosity (Ug). Note that Ug = 0 for inviscid disks, as
& o considered here.
1.000 Figure 4 shows the pseudo-energy decomposition of the two

main type of modes we find. For K, = 100 the mode is driven
by a mixture of relative dust—gas drift (U,, red), itself dominated
by radial drift, and the vertical shear in the azimuthal velocity

) 9:200¢ (Uyy, crosses). However, the high K, = 3594 mode is entirely
3 driven by vertical shear.

> —0.0005 In Figure 5, we show the vertically integrated pseudo-energy

0.000 — contributions as a function of K,. We confirm that the abrupt

Y — dust change in oscillation frequencies around K, = 200 (see Figure 2)

3 gas is due to a change in the character of the most unstable mode. For

—0.001°—— K, <250, modes are destabilized by a combination of dust-gas

& -0.025 R — dust drift and vertical shear in the azimuthal velocity, while the latter

> e gas dominates entirely for K, 2 250. Interestingly, dust-gas drift

—0.050 i, becomes a stabilizing effect (its contribution becomes negative)

0.00 0.01 0.02 0.03 0.04 0.05

z/Hy4

Figure 1. Two-fluid equilibrium for case A with a high dust density layer.
From top to bottom: dust-to-gas ratio, gas density, vertical dust velocity, radial
velocities, and azimuthal velocities.

Z=0.03, St=1e-02, 6=1e-06

®one-fluid ® ” [ ]

stwo-fluid ®

103
Figure 2. Maximum growth rate (top) and corresponding oscillation frequency

(bottom) for unstable modes in case A (high dust density layer), as a function of
the dimensionless radial wavenumber K.

102

for high-K, modes. On the other hand, vertical shear is always
destabilizing.

Figure 5 show that dust settling is always destabilizing,
which is consistent with Squire & Hopkins (2018b), who
find dust settling alone can lead to instability in vertically local
disk models. However, this effect is subdominant in our
stratified models because vertical shear is much more
significant. We also find that buoyancy forces are always
stabilizing, as dust—gas coupling increases the mixture’s inertia
(Lin & Youdin 2017).

We find pressure forces provide increasing stabilization with
increasing K,, which is expected because pressure acts on small
scales. The increased restoring force from pressure may explain
the increasing magnitude of oscillation frequencies (Lubow &
Pringle 1993; Balbus 2003). Ishitsu et al. (2009) showed that in
the limit of an incompressible gas, pressure forces do not
contribute to mode growth or decay. This indicates that gas
compressibility becomes nonnegligible for the high-K, modes
in our case. These modes have short vertical wavelengths and
are localized to regions of largest vertical shear (see Figure 3,
right panel). This is reminiscent of “surface modes” of the
gaseous VSI (Nelson et al. 2013), which are also stabilized by
gas compressibility (McNally & Pessah 2015). These simila-
rities motivate us to interpret the high-K,, dust-driven, vertical
shear modes as dusty analogs of the gaseous VSI; see
Section 6.1.
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Figure 3. Normalized eigenfunctions of the most unstable modes found in case A (high dust density layer) with K, = 100 (left) and K, ~ 3594 (right, also the most
unstable over K,). Perturbations from top to bottom: relative dust density, relative gas density, radial velocity, azimuthal velocity, and vertical velocity. For clarity, we
plot the amplitudes of the velocity eigenfunctions.
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Figure 4. Pseudo-energy decomposition for the modes shown in Figure 3.
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Figure 5. Vertically integrated pseudo-energy contributions for the most unstable modes in case A, as a function of K. Note that we plot the cube root for improved
visualization.
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Figure 6. Maximum growth rate (top) and corresponding oscillation frequency
(bottom) for unstable modes in case A (high dust density layer), with different
values of the radial pressure gradient 7) = 0.01 (solid) and 7} = 0.1 (dashed).

5.1.2. Dependence on the Global Pressure Gradient

Figure 6 shows the effect the global radial pressure gradient,
as measured by f) = nr/H,. Note that dust-gas drift and vertical
shear in the azimuthal velocity, which are the destabilizing
effects for the modes we find, both scale with 7. This is
consistent with the drift-driven classic SI, which also grows
faster with increasing 7) at a fixed spatial scale (Jacquet et al.
2011; see their Equation (29)). For the vertical shear-driven
unstable modes, the discussion in Section 6.1 also indicates that
a minimum 7} is needed for instability (see Equation (58)).
Hence, we find growth rates increase with 7).

We also find that the transition to modes purely driven by
vertical shear occurs at smaller K, for larger 7}: K, > 100 for
f) = 0.1 and K, > 500 for ) = 0.01. This is again similar to the
gaseous VSI as a weaker vertical shear requires larger radial
wavenumbers to destabilize (Latter & Papaloizou 2018).

5.1.3. Dependence on Particle Size

Here we consider Stokes numbers St = 10> and St = 0.1.°
The midplane dust-to-gas ratios are then ~1 and ~9,
respectively (see Section 3.5.1). Growth rates and frequencies
are shown in Figure 7. The trend for St = 107 is qualitatively
similar to our fiducial case with St = 1072, but with reduced
growth rates. The modes again transition from drift-dominated
to vertical shear-dominated as K, increases, here beyond ~400,
somewhat higher than the fiducial case. The oscillation
frequencies for the St = 107> vertical shear modes are also
much smaller in magnitude than that for St = 1072,

For St = 0.1, the curves in Figure 7 are truncated at K, 2
5000-6000 as we were unable to find converged two-fluid
solutions and one-fluid eigenfunctions were found to have large,
unphysical oscillations near the disk boundary. Notice also
the one-fluid model overpredicts growth rates for K, 2 10°. This
is not surprising as the modes have St|lo| = €, which can

6 In the two-fluid calculation with St = 0.1, numerical artifacts developed

near the disk surface, which were remedied by tapering the equilibrium vertical
dust velocity to zero near the upper 10% of the domain. However, this had
negligible effects on the growth rates, oscillation frequencies, or the
eigenfunctions in the disk bulk.
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Figure 7. Maximum growth rate (top) and corresponding oscillation frequency
(bottom) for unstable modes in case A (high dust density layer), with different
Stokes numbers: St = 107> (solid) and St = 0.1 (dashed).
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Figure 8. Magnitude of the relative dust density perturbation for the most
unstable mode (over K,, based on two-fluid growth rates) in case A with
St = 1072 (top) and St = 0.1 (bottom).

invalidate the one-fluid approximation (Lin & Youdin 2017;
Paardekooper et al. 2020).

Nevertheless, we find that St = 0.1 growth rates exceed that
for St = 1073, Moreover, all the St = 0.1 modes are driven by
vertical shear. However, for K, 2 2000, the two-fluid modes
have nearly constant growth rates and were found to be centered
around z = 3.3Hy, unlike the K, < 2000 modes which are
centered around 2Hy, including the most unstable mode.

The two-fluid results show that the most unstable modes in the
St = 10 and St = 0.1 disks occur at K, > 10* and K, ~ 825,
respectively. That is, instability with larger particles occur on
larger radial scales. Figure 8 compares the vertical profiles in the
relative dust density perturbations for the most unstable modes.
Here, we rescale the vertical coordinate to account for different
dust scale heights in these cases. For St = 1073, the mode is
vertically localized with a characteristic length scale I, ~ Hy/2,
whereas for St = 0.1 we find [, ~ 2H,. Thus, instability with
larger particles is also more global in the vertical direction.

We interpret the above results as looser dust—gas coupling
provides more rapid “cooling” to mitigate buoyancy forces,
which then allows destabilization of disturbances on longer
length scales, similar to the gaseous VSI (Lin & Youdin 2015;
see also Section 6.1).
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Figure 9. Maximum growth rate (top) and corresponding oscillation frequency
(bottom) for unstable modes in case A (high dust density layer), with different
metallicities: Z = 0.01 (solid) and Z = 0.1 (dashed).
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Figure 10. Two-fluid equilibrium for case B with a low dust density layer.
From top to bottom: dust-to-gas ratio, gas density, vertical dust velocity, radial
velocities, and azimuthal velocities.

5.1.4. Dependence on Dust Abundance

In Figure 9, we plot the maximum growth rates and
corresponding frequencies for modes in disks with different
metallicities. We find that growth rates modestly increase with
increasing solid abundance, but overall the results are
insensitive to Z. In particular, the transition from mixed modes
to vertical shear-dominated modes does not depend on Z.

5.2. Case B: Low Dust Density Layer

We now consider a low dust density layer with € < 1
throughout the disk column by choosing a stronger diffusion
coefficient, § ~ 1075, and smaller particles, St = 1073, Other
parameters are the same as the fiducial setup in case A. The
equilibrium disk profile for case B is shown in Figure 10.
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Figure 11. Maximum growth rate (top) and corresponding oscillation
frequency (bottom) for unstable modes in case B (low dust density layer), as
a function of the dimensionless radial wavenumber K,.

Growth rates and oscillation frequencies for case B are
shown in Figure 11. We again find two distinct classes of
unstable modes: for K, < 200, growth rates are small
(s < 107%Q) with oscillation frequencies O(f2), while for
K, > 200, modes are nearly purely growing with s saturating
around 0.06f). Case B is much more stable than case A owing
to the smaller dust-to-gas ratio and particle size.

Figure 12 shows the vertically integrated pseudo-energies.
Modes with K, < 200 are dominated by dust-gas drift with
minor contributions from vertical shear and dust settling. This
is unlike case A, where low-K, modes have equal contributions
from dust—gas drift and vertical shear. However, for K, = 200,
modes are driven by vertical shear, as observed for case A.

Figure 13 shows that the mode with K, = 100, primarily
driven by dust—gas drift, involves ultra-short vertical oscilla-
tions of characteristic length scale lszHg, which is much
smaller than Hy =~ 0.1H,. This should be compared to the case
A mode in the left panel of Figure 3, which is driven by a
combination of relative dust—gas radial drift and vertical shear
and is more global, i.e., it varies on a scale comparable to the
dust layer thickness. This suggests that vertical shear drives a
more global disk response.

For the high-K, modes driven mostly by vertical shear, we
find similar behaviors in the eigenfunctions between case B and
A: modes become increasingly localized with increasing K,.

5.3. Case C: Viscous Disk

We briefly examine a viscous disk. To obtain appreciable
growth rates in the presence of viscosity, we set a = 107",
This value is much smaller than that expected in PPDs but is
sufficient to demonstrate the impact of viscosity. We discuss
this issue further in Section 6.3. Here, we use fiducial values of
f) = 0.05 and St = 102, but set Z = 0.01 so that the midplane
dust-to-gas ratio €y ~ 3 is similar to case A. We also use a
larger domain with zp,x = 7Hy4 as we find viscous modes at the
smaller K, values tend to be vertically extended, a result
already hinted at by unstratified calculations (Chen &
Lin 2020; Umurhan et al. 2020).

Figure 14 shows that the equilibrium structure for this
viscous disk is qualitatively similar to case A (Figure 1), except
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Figure 12. Vertically integrated pseudo-energy contributions for most unstable modes in case B as a function of K,. Note that we plot the cube root for improved

visualization.
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Figure 13. Normalized eigenfunctions of the most unstable mode found in case
B (low dust density layer) with K, = 100. Perturbations from top to bottom:
relative dust density, relative gas density, radial velocity, azimuthal velocity,
and vertical velocity. For clarity, we plot the amplitudes of the velocity
eigenfunctions.

in the radial velocities, which is noticeably nonmonotonic away
from the midplane.

Figure 15 shows the growth rates of the most unstable modes
as a function of K, and corresponding oscillation frequencies.
For comparison, we also plot results for an inviscid disk. We
find viscosity strongly suppresses dust—gas instabilities. In the
viscous disk, growth rates maximize at K, ~ 1110 with
s ~ 0.69 and is essentially quenched for K, 2 4300, while
growth rates continue to increase with radial wavenumber in
the inviscid disk.

In the left panel of Figure 16, we show a meridional
visualization of the most unstable mode found for case C. The
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Figure 14. Two-fluid equilibrium for the viscous case C. From top to bottom:
dust-to-gas ratio, gas density, vertical dust velocity, radial velocities, and
azimuthal velocities.

corresponding flow in the inviscid disk is shown in the right
panel. As expected, viscosity tends produce vertically elon-
gated disturbances, here with length scales ~1-2 Hy. This
mode is again predominantly driven by vertical shear, as
demonstrated by its pseudo-energy decomposition shown in
Figure 17.

Figure 18 shows the vertically integrated pseudo-energy
contributions to the unstable modes. Note that there is now a
viscous contribution (brown curve); see Appendix C. For
K. < 200, unstable modes are driven by the relative dust—gas
radial drift with minor contributions from dust settling. These
modes have relatively small growth rates (s < 0.192). For
200 < K, < 1300, modes are driven by vertical shear with
contributions from dust-gas drift. For K, 2 1300, modes are
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Figure 15. Growth rates (top) and oscillation frequencies (bottom) for modes
found in the viscous case C (black circles) as a function of the dimensionless
radial wavenumber K,. Corresponding results for an inviscid disk are also
shown (red crosses).

mostly driven by vertical shear, but their growth rates decline
rapidly due to viscosity, which is more effective at stabilizing
smaller length scales.

As expected, buoyancy and viscous forces always act to
stabilize the system. On the other hand, dust settling is always
destabilizing (Squire & Hopkins 2018b), although here its
effect is small. Gas pressure has negligible effects, which
reflects the incompressible nature of all unstable modes
presented. Like inviscid cases A and B, we find that dust—gas
drift becomes stabilizing at high radial wavenumbers (here
= 103). However, unlike those inviscid cases where vertical
shear is always destabilizing, in the viscous disk we find that
for low-K, modes ( < 200), vertical shear becomes stabilizing.

6. Discussion
6.1. Vertically Shearing Streaming Instabilities

Our numerical results show that the most unstable modes in
stratified dust layers occur on radial length scales < 1073Hg
and are driven by the vertical gradient in the dusty disk’s
azimuthal velocity combined with partial dust—gas coupling.
This is similar to the VSI in gaseous PPDs (Nelson et al. 2013).
To interpret these VSSIs, we invoke the analogy between
isothermal dusty gas and a pure gas subject to cooling as
developed by Lin & Youdin (2017).

For the gaseous VSI, the destabilizing vertical shear results
from the global radial temperature gradient. However, in PPDs,
vertical gas buoyancy is strongly stabilizing. The gaseous VSI
thus requires rapid cooling to remove the effect of buoyancy. In
terms of these physical quantities, Lin & Youdin (2015) found
the instability criterion

10y
Teool < 2 5
Z

(52)

where 0.y, is the vertical shear rate, N, is the vertical buoyancy
frequency, and t.. is the thermal cooling timescale such that

12

Lin
the linearized cooling rate is
1 P
ON = — oP — —bp, | (53)
Teool Pg

We can obtain a criterion analogous to Equation (52) for
dusty disks as follows. We treat the isothermal dusty gas as a
single fluid subject to a special cooling function, as described in
Appendix B. The dusty disk’s azimuthal velocity profile is
given by Equation (B15). The vertical shear rate is thus

Oy rQe’
oz (1 +e?

Next, Lin & Youdin (2017) showed that the square of the
vertical buoyancy frequency in a dusty disk is

(54)

N? = &%%,
0z 0z

Z S

where fy = €/(1 + €) is the dust fraction. Using the equili-
brium condition (Equation (BS8)), we find
) ZQZE/

N = — . 55
¢ 1+ e€ (55)

To estimate the appropriate “cooling time” in an isothermal
dusty disk, we examine the one-fluid effective energy equation
in Appendix B (Equation (B21)). We assume modes have small
length scales and write 0, — ik,, where k, is a real vertical
wavenumber. Assuming both k, and k, are large in magnitude,
the rhs of Equation (B21), which can be interpreted as a
cooling rate after multiplying the equation by P, can be
approximated by its leading term,

B c2Stek?
(1 + €)*Q

where k% = kf + kzz. Comparing Equation (56) with
Equation (53) motivates the identification

_ (4P (4P,

! = 57
coold c2Stek? € StK? G7

as the cooling timescale of an isothermal dusty gas, where
K = kH,.

Inserting Equations (57), (55), and (54) into Equation (52)
gives the minimum wavenumber needed to trigger the dust-
driven VSI,

2o U+ PfHi) 2
eSty | H, | Ha

Note that the rhs is a function of height. To obtain a more
practical criterion, we evaluate it at z = Hy and approximate
€~ ZHg/Hd (see Equation (3)). For settled dust layers with
St > 8, as considered throughout this work, we have
Hy / H, ~ /6/St. These approximations then give

(1+ Z«/St/6)36

K? >

58
~ Znst? ©8
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Figure 16. Structure of the most unstable mode found in the viscous case C (left, with K, ~ 1110) and the corresponding structure for an unstable mode in an inviscid
disk with the same radial wavenumber. Streamlines correspond to the perturbed dust velocity field and colors correspond to the relative dust density perturbation.
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Figure 17. Pseudo-energy decomposition of the most unstable mode found in
the viscous disk (case C).

Evaluating Equation (58) for the fiducial case A (Z = 0.03,
St=10"26 = 10"° 7 = 0.05) suggests K > 20 is needed for
finite dust—gas decoupling to destabilize the disk through
vertical shear. Indeed, for case A, we find that the vertical shear
contributes to the instability for all K, considered (>100); see
Figure 5.

On the other hand, for case B, we have St = 1073 and
8~ 1077, giving K 2 120. We thus expect that a much larger
K, is needed to tap into the free energy associated with vertical
shear. Indeed, Figure 12 show that vertical shear is sub-
dominant for modes below the transition at K, ~ 200. This is
similar to the gaseous VSI (Lin & Youdin 2015): a slower
“cooling” rate, here associated with stronger dust—gas
coupling, means it is can only effectively destabilize smaller
length scales.

We remark that Equation (58) can also be applied to estimate
the minimum radial pressure gradient needed to trigger VSSIs
at a given spatial scale, which may explain the increasing
growth rates with 7} seen in Section 5.1.2.

6.2. Comparison to Ishitsu et al. (2009)

Ishitsu et al. (2009) carried out direct simulations to
investigate the effect of a vertical density gradient on the
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stability of dust layers. Their disk models were initialized with
a prescribed, nonuniform vertical dust density distribution and
corresponding horizontal velocity profiles given by Nakagawa
et al. (1986). This is equivalent to stacking layers of unstratified
disk models. They ignored vertical gravity, physical diffusion,
viscosity, and assumed incompressible gas. We instead
considered compressible gas (although this has negligible
effects) and solve for the steady vertical disk structure self-
consistently, which requires one to at least include dust
diffusion.

Our results are broadly consistent with Ishitsu et al. Their
simulation with St = 10~ yields disturbances with character-
istic wavenumber knr ~ 50 (or K, ~ 10° assuming /) = 0.05)
and growth rate ~{2. This is comparable to our case A with
St = 107 in Section 5.1.3 (see Figure 7), for which we find
growth rates of 0.20-0.4Q for K, > 10°. Importantly, Ishitsu
et al. also find that the vertical shear in the azimuthal velocity
of the dust—gas mixture is the main driver of instability and that
disturbances are centered off the disk midplane, similar to that
observed in our VSSI eigenfunctions.

6.3. Gas Viscosity

The example in Section 5.3 (case C) showed that even a
small amount of gas viscosity of @ = 10~ can reduce growth
rates significantly. However, in PPDs, one may expect up to
o~ 107*, for example, due to turbulence driven by the
gaseous VSI (Manger et al. 2020). Here, we discuss two
supplementary calculations to further explore the role of gas
viscosity.

We first repeat the fiducial case A, but enable viscosity
(a = 1076) and use Zn.x = 7Hy. We find that the most unstable
mode, shown in Figure 19, has K, >~ 30, s =~ 7 X 1074&'2, and
w =~ — 3 x 107*Q, and is driven by vertical shear. Unsurpris-
ingly, the mode has a much larger spatial scale than that for case
C (see Figure 16), with a vertical length scale several times
larger than Hy ( = 0.01H,). However, the nonnegligible mode
amplitudes near z = zy,ax indicate that boundary conditions may
be important.

Next, we increase viscosity to o = 10_4, which alone would
“puff up” the dust layer such that ¢ < 0.3. We thus compensate
by setting Z = 0.3 to obtain the same midplane dust-to-gas
ratio as the above case (¢ =~ 3). We find that the most unstable



THE ASTROPHYSICAL JOURNAL, 907:64 (20pp), 2021 February 1

Lin

Z=0.01, St=1e-02, a=1e-07

dust settling
gas pressure

(vert. shear),

dust-gas drift

—— buoyancy
—— viscosity
e total

103

Figure 18. Vertically integrated pseudo-energy contributions to the most unstable modes found in the viscous case C, as a function of K,. Note that we take the cube

root for improved visualization.
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Figure 19. Structure of the most unstable mode in a viscous disk with
a = 107% and other disk parameters taken from case A (see Section 5.1).
Streamlines correspond to the perturbed dust velocity field and colors
correspond to the relative dust density perturbation.

mode has K, ~ 0.2, s ¥ 4 X 107, and s ~ — . Interest-
ingly, the mode is found to have comparable contributions from
vertical shear and dust settling. However, its radial length scale
of order ~ r (for hy = 0.05) calls the shearing box framework
itself into question.

Nevertheless, these calculations are instructive to show that
viscosity is strongly stabilizing and produces disturbances that
exceed the dust layer thickness, similar to the classic SI in
unstratified, viscous disk models (Chen & Lin 2020; Umurhan
et al. 2020).

14

6.4. Classic Streaming Instability

In unstratified disks, the classic SI of Youdin & Goodman
(2005), driven by the dust—gas relative radial drift, is usually
the only linearly unstable mode (but see Jaupart & Laibe 2020),
which can lead to dust clumping in the nonlinear regime
(Johansen & Youdin 2007).

In stratified disks, we find that the relative dust—gas drift can
provide a significant (although not total) contribution to the
most unstable modes on wavelengths of 0(1072Hg) or larger.
Thus, we still refer to them as classic SI modes. If their
nonlinear evolution is similar to their unstratified counterparts,
then we can expect dust clumping on such scales.

However, classic SI modes are not the most unstable across
all scales, which are the VSSI modes that occur on radial scales
of 0(1073Hg) or smaller, as discussed above. The nonlinear
evolution of classic SI modes will thus be affected by small-
scale VSSIs that develop first. If VSSIs saturate in turbulence,
as the early work of Ishitsu et al. appear to suggest (albeit based
on simulations with a limited parameter range and integration
times—see Section 6.7), then we expect a reduced efficiency of
dust clumping via classic Sls.

In this case, we suggest that low-resolution (e.g., global)
simulations that are biased toward classic SI modes should
include a physical dust diffusion to mimic the effect of
unresolved VSSI turbulence.

6.5. Dust-settling Instability

The DSI (Squire & Hopkins 2018b; Zhuravlev 2019, 2020) is
an analog of the classic SI, except the DSI is driven by the
vertical drift of dust relative to the gas (i.e., dust settling), rather
than their relative radial drift. The DST has been proposed to seed
planetesimal formation by acting as a dust-clumping mechanism,
although recent simulations show this effect may be weak in
practice (Krapp et al. 2020). Studies of the DSI have so far
adopted vertically local disk models, which ignore vertical shear
but permit equilibria to be defined without dust diffusion. This is
not possible in our vertically global disk models.
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Our vertically global models confirm that dust settling acts to
destabilize stratified dusty disks, which suggest that the DSI is
present. However, it is generally subdominant to vertical shear,
relative radial drift, or both. We can crudely understand this by
comparing the dust-settling velocity vy, to the azimuthal
velocity difference across the dust layer, Hy vy'. Using
Equations (19), (21), and (54), and considering St < 1, we find

M
(14 €)*6 H,

Zi

RESTR (59

/
‘ Hdvy

Vdz

where we used Z ~ eHd/Hg (see Equation (3)). We can further
use O~ StZz/e2 to rewrite Equation (59) as ~)/(StZ),
assuming € = 1.

For the fiducial case A, we find Equation (59) gives ~90, i.e.,
dust settling is dwarfed by vertical shear. Hence, for well-settled
dust (small ¢), instability is primarily due to vertical shear,
provided its free energy can be accessed (see Section 6.1).

Dust settling may dominate over vertical shear if § = Zf). For
PPDs with Z and 7} both of 0(1072), this requirement translates
to 6 > 10~*. However, such a large diffusion parameter is likely
to be strongly stabilizing (Chen & Lin 2020; Krapp et al. 2020;
Umurhan et al. 2020).

Similarly, we can compare settling to the dust—gas relative
radial drift (Equation (1)), say at z = Hy, to find

2 0
1+EZ,

Vdrift

(60)

Vdz

again assuming St < 1. In PPDs, the last factor is O(1). Then, for
settled dust layers with € of O(1), we expect settling to be at most
comparable to radial drift. For well-mixed dust layers with
€ ~Z~ 007, the above ratio is O(f)) < 1 so that dust
settling can dominate. However, having such an equilibrium
requires a large diffusion coefficient (6 > St), which may provide
complete stabilization.

6.6. Applicability of RDI Theory

Both the classic SI (for ¢ < 1) and the DSI are RDIs (Squire
& Hopkins 2018a, 2018b). RDIs arise when the background
relative dust—gas motion resonates with a wave in the gas. The
local condition for an RDI is

k- — vg) = Wgas(k)

(Squire & Hopkins 2018a), where wg,s(k) is the frequency of a
wave mode in the gas (when there is no dust) with local
wavenumber k. The small-e classic SI and the DSI occur when
radial dust drift and vertical dust settling resonate with inertial
waves in the gas, respectively. It is then natural to ask whether or
not vertically global modes in our stratified disks can be also
interpreted as RDIs.

The first step of the RDI recipe given by Squire & Hopkins
(2018b) is to choose a gas mode in the absence of dust.
Fortunately, analytic dispersion relations can be obtained for
stratified gas disks (Lubow & Pringle 1993; Lin &
Youdin 2015). Specifically, inertial waves in an isothermal
Keplerian disk satisfy

(61)

2 L 2
o = ———2, 62
Y ) ©2)
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where L is an integer, and it is assumed that L >> wéas/ 0>
(Barker & Latter 2015; Lin & Youdin 2015).

Let us consider inertial waves with L >> K2 Then,
Wgas = €2, as observed in the oscillation frequency for modes
with K, = 100 in cases A and B (see Figures 2 and 11,
respectively). Using the radial drift and dust-settling velocities
given by Equations (1) and (21), respectively, Equation (61)
becomes

1

Z
279K, — —K, = —,
Ty z St

Hy
where we have assumed St, ¢ < 1 and K, = k.H,. We can use
this condition to estimate the vertical wavenumber K, required
for resonance.

Consider the K, = 100 mode in case A with St = 102 and
z = 0.02H, or case B with St = 10* and z = 0.2H,, where
radial drift and dust settling contribute to instability. The
heights are chosen where mode amplitudes maximize; see
Figures 3 (left panel) and 13. We then find |K,| ~ 5000.
However, the actual global eigenfunctions are better character-
ized by |K.| ~ 102, indicating such modes do not reflect an
RDI, at least locally. This discrepancy may be related to the
fact that these modes are not purely associated with radial drift
and dust settling: vertical shear also contributes (see Figures 5
and 12), but this effect does not enter local RDI theory.

On the other hand, the dominant VSSI modes are unrelated
to the relative dust—gas motion in the background disk. Instead,
it is associated with the single azimuthal velocity of the dust-
plus-gas disk. It is thus unclear if VSSI modes can be
interpreted as RDIs.

It will be necessary to develop a global RDI theory to
address the above issues.

6.7. Implications for Planetesimal Formation

In nonlinear simulations, Ishitsu et al. (2009) showed that VSSI
modes first lead to turbulence. They found large grains with unit
St” then underwent clumping, possibly due to the classic SI,
which is most effective for marginally coupled solids (Youdin
& Goodman 2005). However, small grains (St = 107°) were
dispersed by the turbulence and did not clump, but this may be
due to insufficient metallicities and integration times.

Recent simulations carried out by Yang et al. (2017) show
that the clumping of small grains (St = 10°—10"%) require
sufficient metallicities (Z = 0.02-0.04) and integration times
(=10°-10° orbits). They also found dust clumping occurs after
the disk saturates in a turbulent state. It is worth noting that the
resolutions adopted in their simulations, of 0(1074Hg), should
resolve VSSI modes, which we find to dominate on radial
scales of O(10°Hy).

Similarly, Bai & Stone (2010b) carried out three-dimen-
sional simulations of stratified dusty disks, but found that the
initial turbulence is largely axisymmetric, which rules out
nonaxisymmetric KHIs as the cause (Chiang 2008; Lee et al.
2010). Given the large growth rates and axisymmetric nature of
VSSIs, we suggest these were in fact responsible for the initial
turbulence observed by Bai & Stone and Yang et al.

Similar to the gaseous VSI, VSSI turbulence is expected to erase
the vertical shear responsible for it (Barker & Latter 2015), i.e., dust
stratification, by vertically mixing up solids (Stoll & Kley 2016;

7 This regime cannot be probed in our disk models because no equilibrium

can be defined; see Section 3.5.1.
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Flock et al. 2017; Lin 2019). Afterwards, we expect classic SI
modes to become dominant. However, the ambient VSSI
turbulence likely provides significant stabilization, especially for
small grains (Chen & Lin 2020; Umurhan et al. 2020). This
suggests that planetesimal formation in PPDs may be less efficient
than estimates based on unstratified, laminar disk models, because
VSSI turbulence should always be present in realistically stratified
disks.

In light of the above discussion, we hypothesize the
following interpretation of planetesimal formation as observed
in previous simulations, e.g., Johansen et al. (2009). A thin,
stratified dust layer first undergoes VSSIs. This leads to
turbulence that renders the dust layer with almost uniform
density and marginally stable against VSSIs, but still unstable
to classic SI modes. The nonlinear evolution of the classic SI
then produces dust clumps that, under appropriate conditions,
leads to gravitational collapse into planetesimals.

6.8. Caveats and Outlooks
6.8.1. Analytical Models

We have relied on full numerical solutions to the linearized
equations. Although our subsequent analyses hint at the
physical origin of the various instabilities uncovered, a true
understanding of the instability mechanisms require more
rigorous mathematical modeling (Jacquet et al. 2011; Squire &
Hopkins 2018b; Jaupart & Laibe 2020; Pan 2020; Pan &
Yu 2020).

To this end, it is desirable to derive an algebraic dispersion
relation for modes in a stratified dusty disk. This will allow us
to classify modes and explain their growth as well as oscillation
frequencies. This might be possible for the VSSI by exploiting
the analogy between dust-laden flows and pure gas subject
to cooling (Lin & Youdin 2017), as in the latter case analytic
solutions for the gaseous VSI can be obtained (Lin &
Youdin 2015).

6.8.2. Multiple Dust Species

We have only considered a single dust species. However, a
distribution of particle sizes is expected in reality (Mathis et al.
1977; Birnstiel et al. 2012). Recent generalizations of the classic
SI in unstratified disks show that having multiple dust species
can significantly reduce growth rates when e < 1 (Krapp et al.
2019; Paardekooper et al. 2020; Zhu & Yang 2020). For the
DSI, though, a particle size distribution has a limited effect
(Krapp et al. 2020).

The VSSI is associated with the vertical shear of the dust-
plus-gas system. Considering small, tightly coupled grains, all
dust species and the gas share the same azimuthal velocity to O
(St). We may thus naively expect the VSSI to be qualitatively
similar for single and multiple dust species, if the two systems
have the same dust-to-gas ratio profile and average Stokes
number. This should be checked with explicit calculations.

One approach is to add vertical gravity and dust diffusion to
the one-fluid model of a dusty gas with a continuous particle
size distribution recently developed by Paardekooper et al.
(2020). This is equivalent to adding one extra equation for the
particle size-density to the one-fluid equations in Appendix B,
which can then be implemented in the codes developed for this
study.

16

Lin
6.8.3. Dust Diffusion Model

We adopted a simple dust diffusion model so that stratified
equilibria can be defined and standard linear stability analyses
can be carried out. Physically, this model assumes there exists
an underlying, external mechanism that stirs up dust grains,
such as turbulence. In our implementation, this is characterized
by a single, constant diffusion coefficient. However, realistic
turbulence may depend on the disk structure. For example,
turbulence driven by the gaseous VSI can be reduced by dust
loading (Lin 2019; Schifer et al. 2020). In this case, particle
diffusion within the dusty midplane should be weaker than the
dust-free gas above and below it.

Particle stirring may also result from dust—gas instabilities
itself. Consider, for example, an initially laminar disk. As
grains settle, it may (instantaneously) meet the conditions for
the classic SI, dust-driven VSI, KHIs, or others. However, to
properly describe how a settling dust layer becomes unstable,
one needs to perform stability analyses with respect to
nonsteady backgrounds (e.g., Garaud & Lin 2004), which is
beyond the scope of this work. Nevertheless, such instabilities
are thought to drive turbulence that prevents further settling
(e.g., Johansen et al. 2009) and maintain a quasi-steady state.

In the above contexts, our study should be interpreted as the
stability of dust layers whose equilibrium state is maintained by
turbulence driven by preexisting dust-gas instabilities. To
better reflect realistic PPDs, our models should thus be
generalized to diffusion (and possibly gas viscosity) coeffi-
cients with strength and spatial dependencies based on explicit
simulations of quasi-steady, turbulent dust layers (e.g., Bai &
Stone 2010b; Yang et al. 2017).

A more fundamental issue with the adopted diffusion model,
though common, is that it can lead to nonconservation of total
angular momentum (Tominaga et al. 2019). However, we
suspect this will not qualitatively affect the VSSI as it is
unrelated to dust diffusion: Ishitsu et al. observed the same
instabilities, but only included a small diffusion term for
numerical stability. Nevertheless, it would be useful to examine
the VSSI in the angular-momentum-conserving formalism
developed by Tominaga et al.

6.8.4. Nonaxisymmetry

Finally, we considered axisymmetric perturbations exclu-
sively, which preclude nonaxisymmetric KHIs (Chiang 2008;
Lee et al. 2010). The growth of KHIs and the axisymmetric
instabilities presented in this work should be compared to assess
which is more relevant in PPDs. However, in the shearing box
framework, linear, nonaxisymmetric disturbances may only
undergo transient or algebraic growth (e.g., Balbus & Hawley
1992; Johnson & Gammie 2005). Describing them requires one
to solve an initial value problem, rather than the eigenvalue
problem herein. Alternatively, one can forgo the plane wave
ansatz and compute the full radial structure of linear disturbances
with nonperiodic boundary conditions (e.g., Adams et al. 1989;
Savonije & Heemskerk 1990; Lin & Papaloizou 2011a, 201 1b).
However, this would result in a partial differential equation
eigenvalue problem (e.g., Lin 2013), which is significantly more
complex than that considered in this work .
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7. Summary

In this paper, we study the axisymmetric linear stability of
vertically stratified dust layers in PPDs. Our disk models
extend those used to study the classic SI (Youdin &
Goodman 2005), namely unstratified disks, by accounting for
the vertical structure of dust and gas in PPDs, as small solids
are expected to settle near the disk midplane.

We find that the dominant instability in stratified disks is one
driven by the vertical gradient in the dusty gas’ azimuthal
velocity. The large vertical shear within a settled dust layer is a
significant source of free energy, which can be accessed via
partial dust—gas coupling. This allows unstable modes to grow
on orbital timescales. Our findings are consistent with earlier
nonlinear simulations carried out by Ishitsu et al. (2009).

In PPDs, these VSSIs occur on radial scales < 1073Hg,
where H, is the local gas scale height. On the other hand,
classic SI modes, associated with the relative radial drift
between dust and gas, occur on radial length scales > 10_2Hg,
but have much smaller growth rates than VSSIs.

However, the nonlinear evolution of VSSIs may drive
turbulence that mixes up the dust layer (Ishitsu et al. 2009),
rather than dust clumping like the classic SI (Johansen &
Youdin 2007). Given their dynamical growth rates, we suggest
VSSI turbulence may have already manifested in some
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simulations (e.g., Bai & Stone 2010b; Yang et al. 2017),
which show that stratified dust layers first settle into a quasi-
steady, turbulent state before clumping.

If VSSIs are inherent to PPDs and its primary outcome is
turbulence, then planetesimal formation through the classic SI
may be less efficient than previously thought, as clumping will
always be hindered by small-scale VSSI turbulence. High-
resolution simulations that fully resolve VSSI scales will be
necessary to clarify this issue.
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Appendix A
List of Symbols

Table 2 summarizes the frequently used and related symbols
in the main text.

Table 2

Frequently Used Symbols
Notation Definition Description
Pd.g Dust and gas densities
Vag Dust and gas velocities in the shearing box, relative to Keplerian flow
€, € pa/ pe> €z = 0) Local dust-to-gas ratio, midplane dust-to-gas ratio
Yag L o; pd’gdz Dust and gas surface densities
VA /2 Metallicity
Cs Constant gas sound speed
Q JGMy./r3 Keplerian rotation frequency
Hy, hy ¢s/Q, Hy/r Gas disk pressure scale height, aspect ratio
P c? Pq Pressure in the global disk or local pressure fluctuations in the shearing box
n, 7(2r522pg)’18,P, n/hg Dimensionless global pressure gradient, reduced pressure-gradient parameter
a Dimensionless gas viscosity
) (1 + St + 4St%)/(1 + St»)2« Dimensionless dust diffusion coefficient
St T Stokes number with particle stopping time 7
Hy N6/ (6 + St)H, Dust scale height
Opg, etc. Complex amplitude of Eulerian perturbations (eigenfunctions)
S, W Re(o), —Im(o) Growth rate, oscillation frequency of the complex growth rate o
K, kHgy Dimensionless radial wavenumber
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Appendix B
One-fluid Model of Dusty Gas in the Shearing Box

In the “one-fluid” description of dusty gas, we work with the
total density

p=p,+ Py (BI)
and center-of-mass velocity
Vo + PgV
.= M. (B2)
p

Furthermore, by considering small, tightly coupled dust
particles we relate the gas and dust velocities by the “terminal
velocity approximation,”

Vi =V + ts(2 — 277er)2] (B3)

g
(Youdin & Goodman 2005; Laibe & Price 2014). Here,
ty = Typg/p is the relative stopping time. Recall that vy, are
dust and gas velocities in the shearing box relative to the
Keplerian flow, respectively, and P is the local pressure
fluctuation. The term o n represents the radial pressure
gradient in the global disk. Thus, in the unperturbed state with
vanishing P, dust drifts radially relative to the gas.

The dust—gas mixture is modeled as a single, adiabatic fluid
with a special cooling function (Lin & Youdin 2017; Lovascio
& Paardekooper 2019). Dropping the subscript “c” for clarity,
our one-fluid model equations in the local shearing box to O(t,)
are

0
V() =V - DpVe), (B4)
P +v-Vy= _vr + 277}”92&]2' + 2Qvx — vaﬁ — 02z,
ot P p 2
(B5)
oP 2 2, 2
o + V- (Pr) = ¢V - 1 g (VP = 20rQ¥p,2)]. (B6)

(Laibe & Price 2014; Lin & Youdin 2017; Lovascio &
Paardekooper 2019; Chen & Lin 2020; Paardekooper et al.
2020), where fy = pq/p is the dust fraction. Note that py =P / 2

for the isothermal gas we consider, so f; =1 — P/ c2p. The
second term on the rhs of Equation (B5) vanishes in a particle
disk where p, — 0, because solids do not feel pressure
gradients. Conversely, for a dust-free gas disk (pg/p — 1), we
recover the full pressure support from the global disk. The
second term in the parentheses on the rhs of Equation (B6) arises
from the contribution to the terminal velocity approximation
from the large-scale radial pressure gradient in Equation (B3).

B.1. Approximate Equilibria

As in the two-fluid model, we seek steady, horizontally
uniform solutions. The mass, energy, and vertical momentum
equations are then

pv, = Dpy(Ine)’, (B7)

P/
v = —— — P7~0,

2 (B8)
p
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Pv, = c2t.f, P/, (B9)

where in Equation (B8) we ignore the O(VZZ) term a posteriori
for consistency with the small 7, approximation used to derive
the one-fluid model. These equations may then be solved for
constant 7y = t,/f, = St/Q to yield

St 22
= epexp| ———1, B10
€= € P[ 2(Sng] (B10)
€
v, = — StzQ2, (B11)
1+ ¢

5 Z2
P = Pyexp| —(¢ — €g) — — |. B12
0 P[St( 0) 2Hg2] (B12)

From here, it is clear that v, = O(St), so it is self-consistent to
ignore the O(vzz) term. Equations (B10)—-(B12) are in fact the
same solutions as in the full two-fluid model in the limit
St <« 1 (see Equations (19)—(21); recall g — St for St — 0
and note v, = fyvq,).

The horizontal momentum equations are

vVl = 27)er& + 2Qv, ~ 0,
p

(B13)

/
VvV, = —

y —Vx,

(B14)

where we ignore the quadratic term in Equation (B13) to obtain

717rQ
1+ €

vy = (B15)
This is expected on physical grounds for tightly coupled dust
(St — 0). In this limit, the mixture behaves close to a single
fluid with orbital velocity depending on the level of dust
enrichment. For ¢ — 0, we have a pressure-supported gas disk
at sub-Keplerian velocity (assuming 7 > 0), while € — oo
corresponds to a particle disk on exactly Keplerian orbits,

because then v, — 0.
Next, we use Equations (B15), (B14), and (B11) to obtain

!/
by = 73‘) o 2nrQdee Stz

QY A+e3 T (B16)

Notice the radial velocity of the dust—gas mixture’s center of
mass depends on height. It is only zero at the midplane and for |
z| = 00 where ¢ — 0. For n >0, the specific angular
momentum decreases with increasing |z|: the mixture gains
pressure support as it becomes more gas-rich away from the
midplane. This means that as a parcel of the mixture settles, it
finds itself having an angular-momentum deficit compared to
its surrounding; it thus drifts inwards (v, < 0), as indicated by
Equation (B16).

B.2. Linearized Equations

We linearize the one-fluid equations about the above basic
state, with nonuniform v(z), v,(z), and v(z). As in the main
text, we assume axisymmetric perturbations in the form of
op(z)exp (ot + ik,x) and similarly for other variables. The
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linearized equations are SE3 = ¢2 [k, Im(W&v) — Re (W'orH)] (B26)
0 . ) - eQvay —
o2l 4+ ik, [6vx+vx p)+p( %L +6v) sEy = — 22 oo s #y = E20 = Vel ooy
p p p\ p (1+e) St
sp) | 6 (B27)
+vz(—p]+ WL 4 s .
p P sEs = —ez* Re (Q6v)")
0 P
~Df| 0" — K20 + pd(f 2y Q’] _ 2021 + )Re (‘Sp 6 ](wz* . (B29)
Pa\ € Pa P P
e[ opq ' Ine)” opq B17 The factor of 4 in the expression for E, is introduced to
+— ,0_ + (ne) p_ ’ ( ) eliminate the rotation terms in Equations (B18) and (B19). E| is
d d associated with the vertical shear in the equilibrium velocities,
o8v. + ikov v + V.SV, + 1.6V E, is associated with dust settling, and E3 is associated with
* o Z2 ¢ pressure forces. In the second equality for E4, we used
= —ikXEW _ 2P 0 + 2Q06v,, (B18) Equation (B3) to relate the global radial pressure gradient to the
p (1 + €)? . dust—gas radial drift in steady state. For Es, we used the
0 equilibrium condition P’/p ~ —z)? and in the second equality
obvy + ik v vy + v}’, ov, + v, 5\;}{ = — v, (B19) used the fact that the total density p o< P(1 + €) to relate the
) 2 perturbed dust-to-gas ratio to pressure and density perturba-
. , , P €Q P tions. From this, it is clear that Es is associated with buoyancy
obv, + ikevebv, + v v, + v by, = ——— — =W/, effects, i.e., pressure—density perturbation mismatches.
pl+e p
(B20) Appendix C

Two-fluid Pseudo-energy Decomposition

. P’
oW+ ik (6, + v W) + F(VZW + ov) Following the same procedure as in the one-fluid treatment
TVW AW+ & (Appendix B.3), we can define the pseudo-energy in the full
¢ : : two-fluid framework as

K 2 K'( P 6K
= ;[W” kW 2 ( Pt W’) Uior = € (18vac? + 4 [6vgy* + [6v:)
6
v i(&) + mpy K + [Ov P + 4 0wy P + 18P =D U, (CD)
P\ K K '
— with
_ 2ikxnr§222£[(l €)Q 1 W], (B21)
g P\l + € sU; = —[ev), Re (8vg, V) + v Re(évgZ Vi1
where —4[e vdv Re (6vy, (5vdy) + v, Re (Ovg, bvy )]
2 — vy, |6va: |
= G PSte ’ (B22) B dz 16vie |
Q(l + 6)2 = Sle + SUly + SUlz» (CZ)
and recall Q = é¢/e and W = 6p,/p, = OP/P. sUy = — € vy, Re (6vy, 65, + 46v5,6vg, + 0vg.0v),  (C3)
B.3. Mode Energetics sUs = ke Tm (Woy, x) Cs Re(W’é ), (C4)
Following Ishitsu et al. (2009), we multiply the x, y, and z €9 N
momentum equations (Equations (B18)-(B20)) by 6v), ., sUy = _g[(vgx vax) Re(Qbvy,)
respectively, combine them appropriately, then take the real
part. We also scale the overall result by a factor of (1 + €) for 40 — va)Re(Qbry) (C5)
easier comparison with the corresponding two-fluid treatment + |6vgr — Svar* + 4 |6vgy — vy
in Appendix C. The one-fluid result is 2
X + [6vg; — OVl ],
Eo = (1 4+ e)(|on* + 4 |5Vy|2 + |6Vz|2) = ZEia (B23) eN
i=1 sUs = 5 Re (Q6vy,), (Co)

with
sUs = Re ((SFVISC 6v + 4(5FV“C 5v + 6FV“°6 ) (C7)

sE; = —(1 + €)[v.Re (6v,6v]) o )
, S 60 Sv 2 where 6F"° is given by Equations (44)—(46).
+ 4w Re (bv:6v) + v; [6v: 7] As in the one-fluid model, we can associate U; with the
= sEi, + sEy, + sEj; (B24) vertical shear in the equilibrium velocities, U, with dust

. ek ek settling, Us with gas pressure forces, U, with the dust—gas
sEy = —v (1 + e)Re (bv 6v; + 4ov; v + v, 6v))  (B2S) relative drift, and Us with vertical buoyancy. The full two-fluid
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framework also includes viscous contributions, U, which is
ignored in the one-fluid treatment.
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