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Abstract

C-type shocks are believed to be ubiquitous in turbulent molecular clouds thanks to ambipolar diffusion. We
investigate whether the drag instability in 1D isothermal C-shocks, inferred from the local linear theory of Gu &
Chen, can appear in nonideal magnetohydrodynamic simulations. Two C-shock models (with narrow and broad
steady-state shock widths) are considered to represent the typical environment of star-forming clouds. The
ionization-recombination equilibrium is adopted for the one-fluid approach. In the 1D simulation, the inflow gas is
continuously perturbed by a sinusoidal density fluctuation with a constant frequency. The perturbations clearly
grow after entering the C-shock region until they start being damped at the transition to the post-shock region. We
show that the profiles of a predominant Fourier mode extracted locally from the simulated growing perturbation
match those of the growing mode derived from the linear analysis. Moreover, the local growth rate and wave
frequency derived from the predominant mode generally agree with those from the linear theory. Therefore, we
confirm the presence of the drag instability in simulated 1D isothermal C-shocks. We also explore the nonlinear
behavior of the instability by imposing larger-amplitude perturbations to the simulation. We find that the drag
instability is subject to wave steepening, leading to saturated perturbation growth. Issues concerning local analysis,
nonlinear effects, one-fluid approach, and astrophysical applications are discussed.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Shocks (2086); Molecular clouds (1072);

Interstellar medium (847); Star forming regions (1565); Magnetohydrodynamical simulations (1966)

1. Introduction

Stars form in the cold and dense cores of molecular clouds in
the interstellar medium (e.g., Kennicutt & Evans 2012;
Hennebelle & Inutsuka 2019; Girichidis et al. 2020). Observa-
tions and numerical simulations suggest that molecular clouds
exhibit supersonic and magnetized turbulence (e.g., Elmegreen
& Scalo 2004; Ballesteros-Paredes et al. 2007; Hennebelle &
Falgarone 2012). The resulting shocks can lead to gas
compression and energy dissipation, which have critical
impacts on the environment of star-forming clouds (e.g., Smith
et al. 2000). Additionally, the star-forming clouds are weakly
ionized by cosmic rays with a typical ionization fraction <107
(e.g., Draine et al. 1983; Tielens 2005; Dalgarno 2006; Indriolo
& McCall 2012). The ions, coupled with the stressed magnetic
fields, strive to drift against the ion-neutral drag in a cloud. This
nonideal magnetohydrodynamic (MHD) phenomenon, known
as ambipolar diffusion, pervades the weakly ionized plasma in
star-forming regions (Mestel & Spitzer 1956; Spitzer 1956;
Shu 1992; Zweibel 2015). It also influences the structure of
interstellar shocks. When a supersonic shock travels slower
than the magnetosonic speed of the ions, a jump-type shock (J-
shock) is preceded by a magnetic precursor due to the
ambipolar diffusion (Mullan 1971; Draine 1980). The extent
of the steady magnetic precursor depends on the interplay
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between the magnetic field and thermodynamics. When the
field strength is strong enough or when the radiative cooling is
efficient, the J-shock following behind disappears and the
neutral flow remains supersonic throughout, thereby forming a
continuous-type shock (C-shock) with a smooth transition in
physical quantities between pre- and post-shock regions
(Hollenbach et al. 1989; Roberge & Draine 1990; Draine &
McKee 1993).

With turbulence-enhanced ambipolar diffusion, C-shocks
have been posited to play a key role in core and star formation
(e.g., Li & Nakamura 2004; Chen & Ostriker 2012, 2014).
Observationally, various efforts have been made to detect such
features in turbulent molecular clouds (e.g., Li & Houde 2008;
Hezareh et al. 2010, 2014; Xu & Li 2016; Tang et al. 2018),
though most of them are indirect measurements and highly
dependent on the adopted dynamical and chemical models
(e.g., Flower & Pineau Des Foréts 1998, 2010; Gusdorf et al.
2008; Lehmann & Wardle 2016; Valdivia et al. 2017, please
see also the Introduction of Gu & Chen 2020, hereafter GC20).
More elaborate models and observational applications for a
C-shock substructure can include a J-shock tail when the
dynamical timescale of the astrophysical flow, such as outflows
from young stellar objects or supernovae, is short enough
that the shock structure of multifluid as a whole has not reached
a steady state (e.g., Chieze 1998; Lesaffre et al. 2004;

7 For example, C-shocks form when the shock speed is not higher than
~40-50 km s~ to dissociate H, and thus quench strong H, line emissions in
the environment of the BN-KL region of Orion molecular clouds (Chernoff
et al. 1982).
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Karska et al. 2018; Anderl et al. 2014). In this work, we restrict
ourselves to stationary (i.e., steady-state) isothermal C-shocks
in the typical environment of star-forming clouds (Chen &
Ostriker 2012), where the cloud lifetime is sufficiently long,
typically about tens of millions of years (Engargiola et al. 2003;
Blitz et al. 2007; Kawamura et al. 2009; Murray 2011; Miura
et al. 2012; Meidt et al. 2015; Jeffreson & Kruijssen 2018). The
simplicity enables us to set up an equilibrium C-shock
background and investigate the shock substructure induced
by dynamical instabilities alone.

C-shocks in a steady state are subject to dynamical
instabilities. It is well-known that C-shocks are susceptible to
Wardle instability, provided that the cosmic ionization and ion-
electron recombination processes are not efficient (War-
dle 1990, 1991; Smith & Mac Low 1997; Stone 1997; Falle
et al. 2009). In the typical environment of star-forming clouds,
the timescale of the ionization-recombination process is short
vis-a-vis other dynamical timescales of interest, and therefore,
ionization-recombination equilibrium is nearly attained. Under
this condition for the ambipolar diffusion, Gu et al. (2004) first
showed that a fast drift between the ions and neutrals can
provide free energy to facilitate an unstable mode known as the
drag instability, which is a local linear overstability phenomenon
associated with an exponentially growing mode of a propagating
wave due to the ion-neutral drag. The authors postulated that
the instability could occur in a C-shock where the magnetic
field is compressed and thus the ion-neutral drift velocity is
greatly enhanced, namely, supersonic. GC20 performed a local
Wentzel-Kramers—Brillouin-Jeffreys (WKBJ) analysis to study
local perturbations in a 1D isothermal C-shock. The wavenum-
ber and growth/damping rate associated with a local mode of a
given wave frequency can be found at each location. Their study
confirmed the postulation of Gu et al. (2004). As the unstable
mode is advected with the fast shock flow downstream, it travels
a few wavelengths over one growth timescale in the shock
frame. The total growth of the drag instability is thus limited by
the C-shock width. Consequently, the instability requires a finite
amplitude to grow to a nonlinear phase. Gu (2021) extended the
analysis to 2D perpendicular and oblique C-shocks and found
that the instability finds its way to avoid the threat from
magnetic tension on small scales by exciting the slow mode. For
most of the oblique shock angles, the most unstable modes in a
2D C-shock are transversely (i.e., normal to the shock flow)
large mode, and thus their growth rate is in general comparable
to that derived in the 1D case.

Consequent to the ongoing progress in the linear theory of
drag instability, we continue the effort to investigate the
instability in numerical simulations. In the present work, we
focus on the instability in 1D isothermal C-shocks, aimed at
revealing the instability in nonideal MHD simulations under
the guidance of linear theory. Numerical simulations also help
in exploring the drag instability beyond the local linear theory
—to calculate the global growth of the instability across the
entire shock width and to investigate the nonlinear outcome of
the instability with an initial large perturbation. The contents of
this paper are structured as follows. In Section 2, we introduce
basic equations for a 1D isothermal C-shock, including the
local WKBJ analysis for the perturbations in the one-fluid
approach for the neutrals. In Section 3, we describe the process
of setting up a nonideal MHD simulation and explain the
method based on the linear theory, to identify the drag
instability in numerical simulations. The simulated results are
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presented in comparison with the linear results in Section 4,
followed by the nonlinear results from simulations in Section 5.
A couple of points for the drag instability in C-shocks are
discussed in Section 6, concerning the local linear analysis,
nonlinear effects, one-fluid approach, and astrophysical
applications. Finally, the method and results are summarized in
Section 7.

2. Basic Equations

Chen & Ostriker (2012) simulated C-shocks produced by
converging flows under the strong-coupling approximation,
i.e., the ion-neutral drag force is balanced by the Lorentz force
acting on the ion: f; =f; = (1/4m)(V xB) x B, where B is the
magnetic field. As the timescale for the ionization-recombina-
tion equilibrium is short in the typical environment of star-
forming clouds, the two-fluid equations governing ambipolar
diffusion can be reduced to the following one-fluid equations
for the density p,, pressure p,,, and velocity v,, of the neutrals as
well as B (e.g., Mac Low et al. 1995):

Ip

—L 4+ V- (p,w) =0, ey
ot
o, 1 1
Pn + 0 -V +Vp, =—KN xB)xB, (2
ot | 4
8_B + V x (B X v,)
ot
=V x {B x ! Bx(VxB], 3)
| 47V P,

where the ion density p; is related to the neutral density by
p; = \JEcr/B)p, = 107X, gmi\/p,/m, in the ionization-
recombination equilibrium, {cg is the cosmic-ray ionization
rate, J is the recombination rate coefficient, m; = 30my is the
ion mass, m, = 2.3my is the neutral mass, and y= 3.5 X 103
ecm® s~ g ! is the drag force coefficient (Draine et al. 1983).
With the basic state for a 1D steady-state isothermal C-shock
given by Chen & Ostriker (2012), the local perturbations
U(w, k) = (6B, 6p,, 6v,)" multiplied by exp(ikx + iwt) are
governed by the following linearized equation under the WKBJ
approximation:

C,U = iwU, 4)
where
—ikV, — Dympik? 3 'kvg,E —ikB
2 p
C, = 0 —ikV, _ikpn P ()
% 2 V,
—ikAn _pS DB gy,
i B P P ]

and a few terms associated with the background gradients in C,,
have been ignored due to the spatial scale of local perturbations
1/k < the local gradient length scale of background states.
Moreover, the constraint of ionization equilibrium,
6pi/ pi=(1/2)6p,/ p., has been applied to the perturbation of
Equation (3) in deriving Equation (4). In Equation (5),

Vi = B/1/47rpn = B/\/47m,,m,, is the Alfvén speed of the

neutrals with the number density 7,, Dynvi = V3, /7p; is the
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ambipolar diffusion coefficient, V; = —D,mpid InB/dx is the
drift velocity of the ion relative to the neutral due to ambipolar
diffusion, and ¢, = 0.2 km s~ ! is the isothermal sound speed at
a temperature equal to 10 K.

GC20 focused on the drag instability within a C-shock in the
linear theory including both ion and neutral species, i.e., a two-
fluid linear approach without assuming ionization equilibrium
and strong coupling for perturbations. Nevertheless, the authors
have also derived a few key terms in Equation (4) to strongly
suggest that the drag instability should remain in the one-fluid
approach for a 1D steady-state isothermal C-shock. In the
following with Equation (4), we provide a formal and complete
derivation for the confirmation. Equation (4) admits nontrivial
solutions when the determinant of C,, is zero. It then follows
that

kzvﬁ,n(%ikvd + F) = (' + Dumvik?)
x (=12 = k2%¢] + ikViypy), (6)

where I' =iw+ ikV, is the growth/damping rate and wave
frequency in the frame of the neutrals. Following Gu et al.
(2004) and GC20, we consider a mode with I' to be smaller
than the recombination rate 25p; and the ambipolar drift rate
across the mode wavelength k|V,|, but still larger than
the neutral collision rate with the ions ~p; and the
sound-crossing time over one mode wavelength kc,.
Besides, Dympik? >> Dampik/(d InB/dx)~' = k|V,| because
k(dInB/dx)"' > 1. Therefore, Equation (6) is reduced to

k2vjn(%ikvd) ~ Dampi K2 (T2 + ikVyyp), (7
which yields
1+
[~ iT kI Valyp; . ®

The above derivation can be physically understood as
follows. —Dmpik>6B/B ~ (3 /2)ikV,,8p,/ p, from the first row of
Equation (4) is a result of the balance between perturbed
magnetic pressure and drag force; namely, the perturbed
version of the strong-coupling approximation. In addition,
Lév, ~ —ika,néB/B — vp, Vabp, / p, from the third row of
Equation (4) arising from the perturbed magnetic pressure
acting on the neutrals. Together with the second row of
Equation (4) (i.e., perturbed continuity equation), these
simplified equations yield Equation (8), which is the same as
the dispersion relation for this particular pair of modes in the
two-fluid linear approach. The positive sign corresponds to the
growth rate and wave frequency of the drag instability. The
phase velocity of the unstable mode in the shock frame is given
by vohn=Re [—wl/k, which is slightly larger than the
background velocity V,, because the Doppler-shift frequency
due to the background flow £V, is much larger than the intrinsic
wave frequency /k|V lvp, / 2 in the frame of the neutrals. In
other words, the unstable mode is essentially advected by the
shock flow downstream (GC20).

It should be noted that the simplified dispersion relation
described by Equation (8) is meant to capture the basic physics
underlying the drag instability. In reality, the ionization-
recombination equilibrium is not perfectly maintained, and thus
there can exist a phase difference between the ion and neutral
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density perturbations. This subtle detail is incapable of being
studied in the one-fluid approach. We shall discuss this issue in
Section 6.3.

3. Verify the Drag Instability in a C-shock MHD Simulation

3.1. Set Up a Nonideal MHD Simulation for the Stability
Analysis of a C-shock

We employ the ATHENA code to study the presence of the
drag instability in a 1D isothermal C-shock. ATHENA is a grid-
based Godunov MHD code designed for astrophysical
problems (Stone et al. 2008), which has been widely used for
studies of galaxy dynamics, star formation, and accretion disks.
In particular, the ambipolar diffusion effect in ATHENA was
developed and tested by Bai & Stone (2011), and has been
adopted in star formation simulations studied by Chen &
Ostriker (2014). ATHENA is therefore an ideal numerical tool
for evolving Equations (1)—(3) for the environments of star-
forming clouds in our study. To study the problem of the drag
instability in a C-shock, we make use of the sample test
problem provided in ATHENA, which generates the steady-state
C-shock profile following Equations (1)—(3) in Mac Low et al.
(1995), and implement the ionization-recombination equili-
brium via a power-law dependence of p; on p,, i.e., p, x pg‘s .

Chen & Ostriker (2012) analytically derived the steady-state
profile of 1D isothermal C-shocks under the typical environ-
ment of star-forming clouds. We use such an equilibrium
solution to construct the base-state C-shock profile as the initial
condition of our 1D simulations. Since the drag instability is
dominated by density perturbation (GC20), we introduce
density fluctuations on top of the background state in the
incoming inflow of the pre-shock region, and let them
propagate downstream at the inflow velocity v,. We set the
density perturbation to be in the form of sinusoidal waves with
given amplitude (<1) and wavenumber k,. To maintain the
amplitude and wavenumber of the perturbation in the pre-shock
region, we continuously drive the sinusoidal waves in density
with angular frequency vok, at the inflow boundary during the
simulation. That is, we set the density in the upstream ghost
zones to follow the same sinusoidal wave pattern based on the
simulation time and the base velocity. The simulation is then
evolved with Equations (1)-(3) but without self-gravity, to
focus on the instability growth within the C-shock. Note that as
the perturbation travels downstream through the C-shock, these
sinusoidal waves retain their initial wy,.. but change k due to
the background gradient.

3.2. Calculation of the Growth Rate from an MHD Simulation

It can be difficult to compute the growth rate of the drag
instability directly from a nonideal MHD simulation because the
unstable mode is expected to travel a few wavelengths over one
growth timescale in the shock frame and because its growth rate
and the wavenumber vary with x due to the background gradient
(GC20). However, we can attempt to extract the local growth rate
indirectly from a simulation by using the linear equation.
Specifically, the linearized continuity equation for the neutrals
reads (i.e., the second row of Equation (4))

iwbp, = —ik(6p, Vi + p,6vy). 9

We now substitute the identity 6v,/V, = C(x)dp,/
p,exp(iA¢) in the above equation, where C(x)=
(|6val/ V) /(|6p4l/ pn) and A is the phase difference between
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ov,, and 6p,. Thus, Equation (9) becomes
w = —kV,(1 + Cexp(iA¢)), (10)

which in turn gives the instantaneous growth rate, which is the
negative of the imaginary part of w:
Lorow = —Im[w] = CkV, sin(A¢), an
with the wave frequency given by
Wyave = Re[w] = —kV,[1 + C cos(A¢)]. (12)
Similarly, we can also compute the growth rate from the

linearized momentum equation for the neutrals (i.e., the third
row of Equation (4)):

1_\grow = —Wws
 kV3,Cysin(Agy — Ag) — ke sin(Ag) — p; Vy cos(Ag)
- e i

13)

where we have used the identity 6B/B = Cg(6p,/p,)exp(iA¢pp)
with Cp = (|6B|/B)/(|0pal/ ps) and Agy = ¢y — ¢5p"-

Due to the different eigenvalues in Equation (4), any initial
sinusoidal perturbation is the linear combination of the three
linearly independent modes from the eigenvalue problem described
by Equation (4). After the damping timescales of the decaying
modes inferred from the linear theory, the initial sinusoidal
perturbation has propagated into the C-shock and settled to the
unstable growing mode in a simulation. At this point, C, Cg, Ag,
and Ag¢p of the unstable mode can be directly extracted from the
simulation at each x. The background states are also known at each
x. Therefore, we can compare the analytical and simulated profiles
of the perturbations ép/p, 6v,/V,, and éB/B in terms of their
relative amplitudes and phase to examine whether they match. If
they match reasonably, we can estimate the instantaneous growth
rate of the drag instability as a function of x from the simulation at
a particular time, using either Equation (11) or (13). The growth
rates of density, velocity, and magnetic-field perturbations should
be the same during the exponential growth phase, except when the
initial perturbations have not yet settled to the pure growing mode
driven by the drag instability or when the perturbations have
grown significantly to be subject to nonlinear saturation.

In reality, the situation is expected to be more complex
because the perturbations are not exactly sinusoidal even over a
distance of 2-3 wavelengths (e.g., see Figure 2 later in this
paper). A range of wavenumber &, amplitudes (C and Cp), and
phases (A¢ and A¢p) could be involved in simulated data, say,
due to the truncation of the sinusoidal waves and due to k,
amplitudes and phases being a continuous function of x (see
Figures 6 and 8 in GC20, and Figures 5 and 6 later in this
paper). To compare to sinusoidal modes at a particular x from
the linear analysis (see Figure 4 later in this paper), a Fourier
transform is performed for the local perturbation from a
nonideal MHD simulation in a spatial range covering two
wavelengths to obtain the predominant mode in the k space.
This k value of the predominant mode is then applied to the
linear theory for further investigation of its relevance to the
drag instability.

3.3. Case Studies

GC20 performed a local linear analysis and found the drag
instability in C-shocks. The authors adopted the shock profile
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described by model Fig3CO12 as a fiducial case, which was
presented in Figure 3 in Chen & Ostriker (2012) with the pre-
shock conditions 79 =500 cm >, vo=35 km s, By =10 G,
and x;o=10. The shock width is about 0.4 pc and the total
growth is significantly limited by the short time span of the
unstable mode within the shock in their fiducial model.
Following GC20, we consider this case in this study. GC20
also conducted a parameter study for a range of pre-shock
conditions (vg~1-6 km s~', 1ny~100-1000 1/cm?,
Byp~5—10 pG, and T=10K; see Table 1 in Chen &
Ostriker 2012 and Table 2 in GC20), which are typical for star-
forming regions in molecular clouds (see e.g., McKee et al.
2010). They found that a stronger shock with a broader shock
width promotes the total growth of the drag instability across
the shock width. Following the discussion of GC20, we also
consider model V06 as a representative case for a wider
C-shock, of which the pre-shock conditions are given by
no =200 cm >, vo=6 km s~ ', By= 10 #G, and x;0=5. In
this model, the instability has more total growth in the two-fluid
linear analysis because the shock width is about five times
larger than that in model Fig3CO12.

4. Results
4.1. Simulated Background and Perturbation Profiles

We investigate the drag instabilities in C-shocks described by
models Fig3dCO12 and V06. Figure 1 shows the background
states of these two C-shock models, presented in terms of the
profile of r,/rp, where r, and rp are the compression ratio of
neutral density and magnetic field, respectively. The simulated
C-shock  structures generated by ATHENA following
Equations (1)—(3) are highly consistent with those integrated
from the ordinary differential equation derived by Chen &
Ostriker (2012), thus confirming the valid setup of the background
states in these simulations.

The simulated C-shocks with density perturbations are
presented in Figure 2. The top panel of Figure 2 shows snapshots
of the sinusoidal propagation of the perturbations with the gas
flow along the +x direction, at simulation time t=1Myr for
model Fig3CO12 (left) and at # = 1.15 Myr for model V06 (right),
respectively. At these moments in both models, the perturbations
have propagated across the entire shock width (see Figure 1),
where the drag instability is to be revealed. The perturbations
(initiated at =0 Myr) are maintained by continuously imposing
sinusoidal waves to gas density at the inflow boundary (i.e., x = 0)
with a relative amplitude |6p,,/pnlini =0.001. Since the drag
instability is a local instability, the numerical setup is more
consistent with the WKBJ approximation for perturbations with
large wavenumbers ko, especially those that satisfy ko >> 1/Lgock
where Lo is the C-shock width. We thus choose ko = 1,/0.003
pcf1 in model Fig3CO12 (Lgock = 0.4 pe) and kg = 1/0.015 p071
in model V06 (Lgnocx = 1.5 pc). The grid size of the computation
domain is 1/8000 and 4/16,000 pc™ " for models Fig3CO12 and
V06, respectively.®

As expected from the drag instability in the linear theory, the
simulated perturbation grows quickly inside the C-shock
(see the top panels of Figure 2) with decreasing wavelength

8 We note that the resolution of simulations presented in this manuscript
differs from model to model, which is the consequence of our numerical
convergence test; i.e., we choose to show the data set with the highest
resolution whether or not such resolution is necessary to resolve the features we
aim to discuss.
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Figure 1. Background state presented in terms of r,,/rz in model Fig3CO12 (left panel) and model V06 (right panel): analytical (solid line) versus simulated (dashed)

results.

with x due to shock compression (see the middle panels of
Figure 2). The amplified perturbation then starts to damp at the
beginning of the post-shock region (x~ 0.6 pc in model
Fig3CO12 and ~ 2.9 pc in model V06; see Figure 1 and the
middle panels of Figure 2). The middle panels of Figure 2 also
indicate that the profiles of the velocity perturbation appear to
be tilted away from the sinusoidal shape near the end of the
shock width in the simulations. It is to be recalled that the phase
velocity of the perturbations is close to the background velocity
V,. As the velocity perturbation év,/V, ~ 6v, /v, increases
with x, the weak nonlinear effect becomes non-negligible. The
velocity crest travels even faster than the velocity trough, which
slightly steepens the sinusoidal profiles downstream.

4.2. Wave Beats in Space

Further, the lower panels of Figure 2 show that before the
perturbation is amplified within the shock, the wave amplitude
goes to zero at particular locations independent of time, i.e.,
x220.125 pc in model Fig3CO12 and x=0.78 pc in model
V06. This simulated result for the nearly zero amplitude can be
explained by the destructive interference of two modes, as the
initial density perturbation disperses in the linear theory.
Solving Equation (4) in the pre-shock region with Re
[w] = Wwave = —Voko, We obtain the three decaying modes (
ie., Im [w] >0) as illustrated in Figure 3. The first mode,
denoted by subscript 1, is predominated by magnetic-field
perturbation and is thus subject to magnetic diffusion. This
mode is short-lived with the damping timescale given by the
ambipolar diffusion timescale 1/ (K*D i) ~ 270 and 850 yr in
the linear theory for models Fig3CO12 and V06, respectively.
In contrast, the second and the third modes, denoted by the
subscripts 2 and 3 in Figure 3, form a pair of modes
predominated by density perturbation and are hence subject
to the ion-neutral drag, thus being long-lived with the damping
timescale ~(vyp;/2)~! (GC20), which are 0.15 and 0.48 Myr for
models Fig3CO12 and V06, respectively.

The density-only sinusoidal perturbation excited at the left
boundary can be expressed by the linear combination of the
three aforementioned modes. As explained in detail in
Appendix, the pair of the modes, i.e., the second and third
modes, are strongly coupled with the initial density

perturbation and are therefore predominantly excited with
equal amplitude in contrast to the weakly excited first mode.
Further, the second and third modes are slowly damped,
compared to the short-lived first mode. Consequently, the
second and third modes are crucial for the subsequent
evolution. This is the reason why a density-only perturbation
is excited in the simulations. As has been demonstrated
in GC20, one of these two primary modes becomes the
growth mode due to the drag instability with the other as its
counterpart, yet decaying mode, once the pair of modes
travel into the shock, which can be realized in Equation (8)
also.” Owing to the slight difference in the wavelength, the
second and third modes produce “wave beats in space” until
one of the pair damps and the other grows significantly inside
the shock width. In other words, the envelope of the wave beats
does not travel with time and its spatial interval Ay, =
27/(ky — k3) between the locations of complete destructive
interference. Using the values of k, and k3 derived from the
linear theory as shown in Figure 3, we obtain the beat
wavelength Ay, =~ 0.24 and 1.43 pc for models Fig3CO12 and
V06, respectively. The linear results are consistent with the
simulated locations of complete destructive interference in the
pre-shock region at x~0.12 pc in model Fig3CO12 and
x~0.71 pc in model V06 (i.e., ~ Apear/2 from the left
boundary), as shown in the bottom panels of Figure 2. In
Appendix, we elaborate on the exact locations of zero
amplitude of the beat envelope, which match perfectly with
the simulation results by also considering the initial phase
difference between the mode pair when they are excited at the
left boundary. Besides the first zero of the beat envelope, it can
be also observed from the bottom panels of Figure 2 that the
next minimal amplitude of the wave envelope due to beats
occurs inside the shock, where x ~ 0.32 pc in model Fig3CO2
and 1.75 pc in model V06. The amplitudes are not nil at these
locations, as one of the mode pairs has been growing and the
other has been decaying within the C-shock.

° Given a constant Wyaves it can be shown from Equation (8) that the mode
with k;, i.e., the mode with a slightly large wavenumber in the mode pairs, will
grow in the shock and the mode with k3, i.e., with a slightly small wavenumber,
will decay in the shock.
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Figure 2. The profile of perturbations from the simulations in models Fig3CO12 (left panels) and V06 (right panels). The magnetic-field perturbation is multiplied by 10 for
viewing clarity. Top row: propagating perturbations advected by the shock flow at =1 Myr for model Fig3CO12 and at t = 1.15 Myr for model V06. Middle row: the
blow-up of the x range around the beginning of the post-shock region from the top panels to better inspect the individual crest and trough of the perturbations downstream.
Bottom row: the evolution of the density perturbation in the pre-shock and the beginning part of the shock regions to show |8p,,/p,ini = 0.001 at x = 0 and the wave beats.

4.3. Local Mode Profiles and Growth Rates

Figure 4 compares the perturbation profiles of the simulated
(solid line) and analytical results (dashed). The comparison is
made at the neighborhood with the range of about two

wavelengths of three locations within the C-shock in each
model, Fig3CO12 (left panels) and V06 (right panels). The
three locations are selected in the x range of the simulation,
where the perturbations have exhibited clear growth within the
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Fig3CO12 and hence not shown. In model V06, 1/k; = 0.015 pc, 1/k, = 0.0145 pc, and 1/k; = 0.0155 pc.

C-shock (see Figure 2). In other words, to identify the
instability easily, we are looking at the region where the
decaying mode has become much weaker than the growing one
in the pair of density-dominated modes and thus the total
perturbation should be primarily contributed by the growing
mode associated with the drag instability. As described earlier,
the simulated profile for perturbations in Figure 4 is the
predominant Fourier mode extracted from the simulated result.
The wavenumber & of the predominant mode obtained from the
Fourier transform is applied to the linear theory to find the
unstable mode driven by the drag instability. Subsequently, we
scale the amplitude of ép,/p, of the growing mode from the
linear theory to overlap that of the predominant mode from the
simulation, while keeping the relative amplitude and phase
among the perturbations in the linear theory. The procedure
yields the comparison plots in Figure 4.

Figure 4 illustrates that the simulated curves for perturba-
tions almost match the analytical curves with little perceptible
difference, strongly suggesting the presence of the drag
instability in the simulation. Hence, we identify C, Cp, A¢, and
A¢p from the simulated curves in Figure 4 and present the
numerical results to compare the analytical solutions in
Figures 5 and 6 for models Fig3CO12 and V06, respectively.
The amplitudes of 6p,,/p, are much larger than those of év,,/V,,
and 6B/B, ie., both C and Cz< 1, as has been realized
by GC20. Additionally, év, and éB/B generally lead 6p, by a
phase of A¢p~097r and A¢p~ 1.5m, respectively, which
yields the instability. Applying Equations (11)—(13), we then
obtain wy,ye and Iy at the three different locations in each
model.

Figures 5 and 6 show that in both models, the analytical and
simulated growth rates have a similar trend along the shock
flow, though they do not exactly match. The discrepancy is
probably caused by the difference between the instantaneous
growth rate of the predominant mode and the exact growth rate,
i.e., the exact growth rate and wavenumber still slightly vary in
the spatial range covering two wavelengths, where the single
growth rate and k of the predominant Fourier mode are
obtained in our methodology. Nevertheless, the curves for the
analytical growth rate are sandwiched by the simulated growth
rates evaluated at the three locations using Equations (11) and
(13). The wavenumber k, the relative amplitudes (C and Cp),
and phase differences (A¢ and A¢p) of perturbations from the
simulated results follow the analytical curves reasonably well.
The top left panels of Figures 5 and 6 show that wy,,ye 1S about
30-40x larger than Iy, for the predominant mode extracted
from the simulation, meaning that the instability propagates

faster than its growth in accordance with the linear results.
Because wyaye 1s dominated by the Doppler-shifted frequency
kV,, due to the fast downstream flow (GC20), k increases with x
due to shock compression as shown in the figures, which has
been observed in Figure 2. Further, C slightly increases with x
but Cp decreases with x. Overall, the simulated results agree
with analytical results in terms of the mode profiles (i.e., the
eigenvectors) shown in Figure 4 as well as the mode growth
rates and frequencies (i.e., the eigenvalues) plotted in Figures 5
and 6. We confirm the presence of the drag instability in
nonideal MHD simulations for 1D isothermal C-shocks.

4.4. Total Growth across the Shock Width

Besides the confirmation of the linear theory of the drag
instability, numerical simulations enable us to directly evaluate
the global total growth TGy;,, for an initial perturbation across
the entire shock width, which cannot be achieved by the local
linear theory. Recalling that the perturbations have the form
U exp(ikx 4 iwt) = W in the local linear analysis, we may
express the amplitude of the growing mode as follows:

|W(x)|—(IU(x = x)| + fx daul , )

d.
xexp( J T x} (14)
Vph

where x; is the location of the beginning of a C-shock and
|U(x))| = |W(xy)|. [W(x)|/|W(x1)| should equal TGy, when x is
the location of the shock end. However, d|U|/dx is unknown
because |U| is arbitrary in a local linear analysis for normal
modes. To get a general sense of the total growth from the
WKBJ analysis, GC20 set the amplitude of the unstable mode |
Ul =1 everywhere in the shock and thus d|U|/dx=0. The
simplification allows the authors to estimate the total growth
TGyy|—; by integrating only the local growth of the mode over
the entire shock width, i.e., the exponential term on the right-
hand side of Equation (14). The total growth of the unstable
mode at x in a shock with |U| =1 is then given by

x dx
TGyyj_1.x = €xp (f rgmw—). (15)
X1 Vph

Therefore, the total growth across the entire shock, denoted by
TGyy|-1, is obtained by setting x to be the location of the shock
end in the above equation.
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Figure 4. Comparison of the perturbation profiles between the dominant Fourier mode of the simulated perturbations (solid line) and the analytical growing mode
(dashed line, scaled to overlap with the simulated density perturbation) for model Fig3CO12 (left panels) and model V06 (right panels). The results are presented at
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GC20 used TGy—; as a proxy of TG, to evaluate which
shock model favors the growth of the drag instability in their
parameter study. As shown above, |U| should vary with x in the
shock and needs to smoothly connect to the initial condition at
x=0. Figure 7 indicates that the profiles of simulated density

perturbation &p,/p, increase faster than TGy, ,, i.e., the total

growth from the beginning of the shock based on the linear theory
with |U| = 1. The peak value of TGy in Figure 7 is TG)y;_.
It is to be recalled from Section 4.2 that the amplitude of the
unstable mode is made of only one-half of the initial density
perturbation |69,/ p,|init = 0.001. The simulated density perturba-
tion increases from 0.0005 to 0.044 in model Fig3CO12 and to
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obtained from Equation (13).

0.057 in model V06, which amount to TGy;,, ~ 88 and 114 in
model Fig3CO12 and V06, respectively. Comparatively, TGy—,
is only about 42.7 in model Fig3CO12 and 58.3 in model V06.
Evidently, the simulated perturbations increase faster than those
based on the simple estimate by a factor of two in the two models
—the local analysis performed at each x cannot account for the
growth contributed from d|U|/dx in Equation (14). Additionally,
the exact growth should be a little larger because the unstable
mode has been slowly damped in the pre-shock region before it
travels to the C-shock and starts growing.

5. Nonlinear Saturation

Apart from the global growth of propagating perturbations
across the shock width, numerical simulations also provide
information about the nonlinear behavior of the growing
perturbation, which the linear theory is inadequate to describe.
To examine the nonlinear effect, we impose a 10x larger initial
perturbation on the gas density |6p,,/p,linie = 0.01 with the same
frequency in model Fig3CO12. The simulated profiles of
perturbations are presented in Figure 8. The perturbations have
propagated across the entire shock width in both models.

MTGIUI:IJ from the linear theory with the initial value
0.01/2=0.005 is plotted on top of the profile of the density
perturbation in the left panel to gauge the growth. By comparing
with Figure 7 (models with a smaller initial density perturbation)
where the perturbation amplitudes grow ~2 X larger than

MT@ Ul=1,x» We can see from Figure 8 that the growth
of the large-amplitude perturbation is only slightly larger than

MTGIUIZIJ- Additionally, the growing perturbation starts
to decay before reaching the peak of TGy ., indicating that the
growth of the unstable mode is suppressed.

In the case shown in Figure 8, as the perturbations propagate
into the shock region, they first maintain a nearly sinusoidal shape
from the initial perturbation (middle panels of Figure 8), but
subsequently grow and evolve into more or less sawtooth waves
with asymmetric amplitudes (right panels), i.e., waves are being
steepened. The effect of wave steepening has also been observed
in the middle panels of Figure 2, though with smaller initial
perturbations the effect is relatively weak in those cases. When
investigating the perturbation evolution in 1D C-shock simula-
tions, we see the wave growth arises from the fact that év, leads
6p, by ~0.97 in the simulations (recall Figure 5), meaning that
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the év,, and 6p,, of the unstable mode are more or less out of phase.
Consequently, the density trough (crest) is associated approxi-
mately with the velocity crest (trough), as shown in Figure 8. The
amplitude of velocity perturbations has reached a non-negligible
fraction of the phase velocity. Therefore, the velocity crest moves
faster than the velocity trough, resulting in wave steepening.
When the amplitude is large, the effect of wave steepening is
enhanced, leading to nonlinear dissipation, thus limiting the
growth inferred from the linear theory. The right panels of
Figure 8 imply that the nonlinear saturation of the drag instability
has already occurred in the weak nonlinear regime where
|6v/vpn| ~ |6v/V,,| ~0.03 (model Fig3CO12) and ~0.04 (model
V06), which correspond to |8p,/p,| = 0.25 (model Fig3CO12)
and ~ 0.45 (model V06) in the simulation. It is evident from the
right panels of Figure 8 that the pressure scale height of the steep
density perturbation is smaller than one wavelength, implying a
strong pressure force in the nonlinear perturbations.

6. Discussion
6.1. Local Analysis

Although the simulated growth rate within the C-shock is
generally consistent with the analytical growth rate, they do not
exactly match in our study. It is probably because the exact
local growth rate and wavenumber still slightly vary in the

10

spatial range covering two wavelengths, where the single
growth rate and wavenumber of the predominant Fourier mode
are obtained by invoking the instantaneous growth rate. In such
a case, the mismatch is expected to only be of order 1/(kL),
where L is the gradient length scale. The local analysis yields
the dispersion relation described by Equation (8). The analysis
can approximately model the effect of a background gradient
length scale L by adding a small imaginary part, i/L, to k. The
dispersion relation then predicts a correspondingly small shift
in w in the complex plane. However, since w is mostly real (i.e.,
w = kV,,), a small fractional shift of w in the complex plane as k
is corrected to k + i/L is likely to change the imaginary part of
w by a significant fraction. The dispersion relation is then
w~ kV, + [(1 + i)/2]1/ka’yp,-, implying a correction to the
imaginary part of w of order iV, /L. Figure 9 illustrates the error
estimate (V,,/L)/I" for L = the pressure scale length L, (solid
curve) and L = the magnetic-field scale length Ly (dashed
curve). They are plotted to compare to the deviation percentage
of simulated I'y, from that obtained in the complete linear
theory as shown in the top left panel of Figures 5 and 6 (i.e.,
deviation of dots or crosses from the curve for Iy, in the top
left panel of Figures 5 and 6). We see that the deviation of
simulated data from the linear results (~20%-50%) is in
general larger than the error estimate (V,,/L)/T" ~20% in the
second half of the shock regions. The effect of k/L may
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contribute to part of the deviations. While the error estimate is
made based on the dispersion relation Equation (8), it is worth
noting that the full linearized equations are more complicated
than that. Namely, the result from the complete linear analysis
does not exactly follow the dispersion relation due to the
presence of other less dominant terms that are dropped to
derive the simplified dispersion relation (refer to Section 2).

As described in Section 3.2, it can be difficult to directly
compare the growth rates based on the local linear analysis to
those from numerical simulations of the drag instability, which
travels a few wavelengths in one growth timescale. Many of the
difficulties in robustly connecting the simulations to the local
linear analysis could be avoided by explicitly integrating the
linearized equations globally through the steady C-shock
background. In contrast to local linear analysis, a global linear
analysis preserves information on the causality of propagating
waves. Therefore, it would be worthwhile to improve the
comparison between the linear analysis and simulated results
by performing a global linear analysis of the local, yet fast
traveling, overstability.

6.2. Nonlinear Saturation

As has been noted by GC20, the density perturbation
dominates over velocity and magnetic-field perturbations in the
drag instability, which leads the authors to postulate that
clump/core formation could be one of the nonlinear outcomes
of the instability in C-shocks. However, our numerical
simulations suggest that the growth of the instability in 1D
isothermal C-shocks saturates in the weak nonlinear regime
where 6p,/p, is only a fraction of unity. Because the
corresponding v, /vp, is even smaller when the nonlinear
saturation occurs, we conjecture that the steep pressure gradient
of the predominant ép, /p,, would be important in saturating the
growth of the drag instability. Analogous to the steepening of
1D ideal MHD waves, the pressure force resulting from the
steepened density perturbation is expected to play a role in the
nonlinear saturation of the drag instability in 1D C-shocks
(Suzuki & Inutsuka 2005; Gu & Suzuki 2009). More numerical
simulations for a parameter study with a large initial
perturbation should be conducted to fully understand the
nonlinear effects.

11

Larger perturbations can play a more important role in the
thermal properties of the modes. The significance of thermo-
dynamics for a perturbation may be characterized by év,,/c;, of
which the maximum values are ~0.2-0.3 for the nonlinear
cases presented in Figure 8. Moreover, the radiative cooling
rate associated with a mode, I';,q, may be approximated as
5,0ncs2 /A, where A is the cooling function. Adopting the
expressions of A from Goldsmith & Langer (1978) due to
molecular and atomic line emissions for 7~ 10 K and n~a
few x10° cm 3, we have I'tag ~ I'grow in our nonlinear cases.
These all together imply that the adiabatic heating or cooling of
the perturbations would be small but non-negligible. In our
present study based on isothermal perturbations, heating effects
(e.g., due to the ion-neutral drag, nonlinear dissipation) and
aforementioned thermal processes are ignored. More self-
consistent calculations incorporating thermochemical evolution
would be worthwhile for future study of mode saturation.

6.3. One-fluid Approach

Although the numerical simulations for the drag instability
are conducted for the one-fluid approach in this study, it is
worth discussing the difference between the one-fluid approach
and the more realistic two-fluid approach from the perspective
of local linear theory. As described in Section 4.4,
TGy=1 =42.7 and 58.3 in models Fig3COI12 and V06,
respectively. However, GC20 identified the maximum-growth
mode in the two-fluid approach and showed that the total
growth of the maximum-growth mode, i.e., the maximum
TGy|—; by varying Wwaves 18 only about 10 and 36 for models
Fig3CO12 and V06, respectively. Apparently, the growth rate
is overestimated in the one-fluid approach. Indeed, we apply
the linear analysis in the two-fluid approach and find that
TGyj=1 = 6.4 and 30.3 for model Fig3CO12 and 30.3 for
model V06, which are smaller than those in the one-fluid
approach by a factor of about 6.7 and 1.9, respectively. We
now investigate the underlying physics.

Figure 10 presents the comparison of the growth rate, A¢
(=5, — @5, )» and ¢, — &, within the shock width between
the one- and two-fluid linear approaches for model Fig3CO12

10 It is defined as the maximum total growth in GC20.
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(left panels) and model V06 (right panels). The curves from the
one-fluid theory have been demonstrated to agree with the
numerical simulation in Figures 5 and 6. However, the growth rate
for the one-fluid approach is larger than that for the two-fluid
approach, albeit still in the same order. Given the relatively high
ionization and recombination rates in the problem, the primary
approximation made for the one-fluid approach is that the
ionization-recombination equilibrium is assumed to strictly hold
for the density perturbations in the continuity equation for the ions
such that &p; oc 8p/%, which helps simplify the two-fluid model
to the one-fluid model. Consequently, the ion and neutral density
excesses are always in phase, maximizing the ion-neutral drag,
thus promoting the growth due to the drag instability. To further
demonstrate the physics more quantitatively, we increase both the
ionization and recombination rate by the same factor of 10 and
perform the linear analysis. In the process, the background state,
which depends only on the ionization fraction, remains
unchanged. The dashed lines in Figure 10 show the results for
the models with 10 times the ionization and recombination rates.
It is evident that in both models, the growth rate in the two-fluid
approach increases toward that in the one-fluid approach when
both the ionization and recombination rates are enhanced. We can
see from Figure 10 that 6p; and 6p, become closer in phase (i.e.,
QS&/)[ — QS% — 0)due to the even faster processes of the cosmic
ionization and ion-neutral recombination in the two-fluid
approach. Therefore, the ionization equilibrium is almost attained
to increase the phase difference A¢ and the growth rate closer to
those in the one-fluid approach.

The importance of the ionization equilibrium in exciting the
drag instability can be also realized by ignoring the ionization and
recombination effects from the local linearized equations. In the
two-fluid approach, the drag instability vanishes in a 1D
isothermal C-shock in the absence of ionization and
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recombination (GC20). In the one-fluid approach, the same
physical process can be achieved by using 6p;/p; = 6B/B (frozen-
in field condition) instead of ép;/p;=(1/2)6p,/p, (ionization
equilibrium) in the linearized equations. Consequently, we find
that the matrix element (3/2)ikV,B/p, in C, becomes ikV, B/ p, in
Equation (4). It can then be shown that there is no unstable
eigenmode from Equation (4), with the frozen-in background state
of 1D isothermal C-shocks where the ion compression ratio equals
rg (Chen & Ostriker 2012).

As k increases in the two-fluid approach, the unstable mode is
more akin to an acoustic mode, and the ionization equilibrium
becomes less valid. Hence, the drag instability is suppressed by
the small-scale gas pressure perturbation along the shock direction
(Gu et al. 2004; Gu & Chen 2020; Gu 2021). In contrast, the
demise of the instability does not occur for a large & in the one-
fluid approach. As the initial k of the perturbation increases in the
incoming flow, we find that the total growth TGy—, increases to
about 58.15 and 121.06 in models Fig3CO12 and V06,
respectively, and then remains almost constant independent of
the initial k. It arises because the thermal pressure term k2c2
becomes important in Equation (6) in the regime of a large k.
Retaining this term in Equation (7) yields the simplified dispersion
relation for the unstable mode to be " ~ kc, — i(|V,|/co)ypi/4. As
in the two-fluid approach, the unstable mode of a large k is
transformed to an acoustic mode in the one-fluid analysis (i.e., Re
[['] ~ kcy), but with a growth rate —Im[I'] independent of k.
However, this growth is spurious because the ionization
equilibrium breaks down in the limit of a large %, i.e.,
kcg > 20p;, and thus the one-fluid approach fails. Therefore,
while the one-fluid analysis is still reasonable to study the general
properties of the drag instability for a moderate value of k, it is
unable to hint at the maximum-growth modes as has been done
by GC20 in their two-fluid analysis.
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Figure 9. Error estimates of the growth rate based on Equation (8) to order of k/L in models Fig3CO12 and V06. The results for L = L, (solid line) and L = Lg
(dashed line) are plotted. The dots and crosses correspond to those shown in the top left panel of Figures 5 and 6. They indicate the percentage deviation of simulated

growth rates from those derived in the complete linear analysis.

Adopting the two-fluid approach, Gu (2021) extended the
linear analysis of the drag instability in 1D C-shocks to 2D
perpendicular and oblique isothermal C-shocks. With one more
dimension for fluid motion and magnetic-field component, the
author found that the properties of the unstable mode generally
depend on the ratio of the transverse (i.e., normal to the shock
flow) to longitudinal (i.e., parallel to the shock flow)
wavenumber. It follows that the growth rate of the instability
is dynamically correlated with ¢6p,. — ¢5pn in different regimes
of the wavenumber ratio, as illustrated in panel (a) in Figures 4
and 9 of Gu (2021). Nevertheless, the 2D linear analysis shows
that unless the shock is mildly oblique or perpendicular, the
maximum growth of the drag instability is probably contributed
by the transversely large-scale mode (i.e., almost 1D mode),
suggesting that the numerical simulation in the one-fluid
approach employed in this study can capture the drag
instability in 2D oblique shocks, albeit with overestimated
growth rates as obtained in this study. As for the drag
instability in mildly oblique and perpendicular shocks, Gu
(2021) found a type of unstable modes, which almost comoves
with the shock and thus has sufficient time to grow without
being limited by the shock width. Since the maximum-growth
modes occur when the wavenumber ratio transitions from the
transversely large-scale mode (i.e., ionization equilibrium is
crucial) to the transversely small-scale mode (i.e., slow modes
become essential). The numerical simulation based on the one-
fluid approach due to ionization equilibrium may miss this
piece of physics and hence fail to capture these modes. More
robust studies in the future would shed more light on this issue.

6.4. Astrophysical Applications

The linear theory, supported by the numerical simulations of
this work, suggests that the drag instability imprints the
density-banded substructure inside a C-shock in the typical
environment of star-forming clouds. The maximum-growth
modes have been suggested by GC20 in their two-fluid
analysis. That is, for the predominant growing mode,
Woave ® =3 x 107" s with k ranging from ~190-1300
pcfl across the shock for model Fig3CO12, and wyaye & —2 X
107" s~! with k ranging from ~110-610 pc ™' throughout the
shock for model V06. However, the density enhancement in a
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C-shock is still weaker than the density in the post-shock
region, which may imply that the density substructure is
probably challenging to probe. For instance, there is no
evidence of subcritical clouds in observations (Crutcher 2012),
and indeed, Nakano (1998) demonstrated that a subcritical
cloud would generally be quite unobservable because it would
have too low a column-density contrast with its surroundings.
Nevertheless, it is worth mentioning that Hoang & Tram (2019)
recently proposed a new probe of the C-shock structure by
detecting microwave emissions from fast spinning nanoparti-
cles due to supersonic neutral gas-charged grain drift. In their
work, the spin-up timescale of nanoparticles is inversely
proportional to the neutral density. While the required
resolution and sensitivity would be unrealistically high to
resolve the density growth within the C-shock due to the drag
instability, the new method could shed new light on
observationally probing some plasma properties.

7. Summary

1D nonideal MHD simulations with ambipolar diffusion are
performed to investigate the presence of the drag instability in 1D
isothermal C-shocks inferred from the linear theory of GC20.
While GC20 focused on a linear theory for both neutrals and ions,
we limit this study to the one-fluid approach for the convenience
of numerical computation. In the one-fluid approach, the
continuity and momentum equations for the ions are reduced to
the relation p; o< pll/ 2 due to the ionization-recombination
equilibrium. We first revisit the linearized equations in the one-
fluid approach and confirm with GC20 that the drag instability
still exists. We then set up 1D isothermal MHD simulations for
two steady-state C-shock models with narrow (model Fig3CO12)
and wide (model V06) shock widths. The density-only perturba-
tion is excited at the inflow boundary of the pre-shock region,
with the angular wave frequency given by —vky.

The perturbation generates a pair of density-dominated
modes with equal amplitude but a slight difference in
wavelength, leading to the wave beats in space as seen in the
simulations (see the bottom panel of Figure 2). As the
perturbations propagate into the C-shock region, one of the
pairs grows within the C-shock width. To compare such growth
with the local linear theory of the drag instability, we extract
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Figure 10. Comparison of the growth rate, A¢, and qu_ — qﬁm within the shock width between the one- and two-fluid linear analyses for model Fig3CO12 (left
panels) and model V06 (right panels). As noted in the legends, the dashed lines illustrate the two-fluid cases with 10 times the ionization and recombination rates.

the predominant Fourier mode of perturbations over the range
of two wavelengths at three locations within the C-shock in the
simulations (Figure 4). We show that the profiles of the
predominant mode agree with those derived from the linear
theory with the same k. Additionally, the relative amplitudes
and phase differences among the density, velocity, and
magnetic-field perturbations of the predominant mode from
simulations enable us to estimate the instantaneous growth
rates and wave frequencies at the three locations, which are
consistent with the linear results as well (see Figures 5 and 6).
Therefore, we confirm the presence of the drag instability in the
nonideal MHD simulations. We also study the nonlinear
outcome of the drag instability in a C-shock by exciting a large
perturbation. We find that as the perturbation propagates into
the shock, it grows but is subsequently saturated due to wave
steepening (see Figure 8). The numerical simulations presented
in this study demonstrate that the drag instability is a
dynamically robust outcome of a 1D steady isothermal
C-shock.
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Appendix
Wave Beats in the Simulations

The density-only perturbation at the left boundary of the
simulations (i.e., x=0) is set up to follow 6p,/p, =
100,/ P,linit €XP(—iT/2 + iwyavet). The perturbation can be
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expressed as the linear combination of the three modes
oxexp(iwwave?) illustrated in Figure 3 for model Fig3CO12.
The same procedure is applied to model V06, though the
corresponding modes are not shown. That is to say,

0 6B,/B 6B, /B
6pnlPn | = 1| 0Pu1/ Pu |+ 02| 0Pu2/ P2
0 1/ Vi Vn2/ Vi
6B /B
+ az| 6pu3/Pu |, (A1)
6Vn3/ Vi

where «;,3 are the projection coefficients of the initial
perturbation on the left-hand side. Given the known modes,
o123 can be solved. In model Fig3COl12, o =~ 8.15 x
104 exp(i0.1)18p, /pylinis 2 ~ 0.5exp(i0.53m)18p, /Aylnic
and a3 ~ 0.5exp(i0.45m)[6p,/p,linit- In model V06, o~
4.14 x 10~*exp(—i0.697)|6p, /p,lini» 2 = 0.5exp( —i0.71
m)16p,/plinit» and a3 =~ 0.5exp(i0.117)|6p, /P, linic. Unsurpris-
ingly, |a;| < |aa| & || because the first mode is magnetically
dominated and thus is not favorably excited by the density-only
perturbation at the left boundary, whereas the second and third
modes are density dominated and hence are primarily excited
with equal amplitude.

The pair of the slowly decaying modes with almost equal
amplitude but with a slight difference in wavelength is
expected to generate wave beats in the pre-shock region as
they propagate downstream. Specifically, ignoring the small
imaginary part of angular frequencies, the linear superposition
of the two traveling waves with the same amplitude and the
mutual phase difference ¢,3 can be generally expressed as

Re [0p,/p,] < Re [exp(ikyx + iw,t)
+ exp(iksx + iwst + ¢y3)]

:[cos(k2 —; k3x + 22 + Y3+ %)]

2 2
X | 2cos kz_k3x+w2_w3t—% )
2 2 2

(A2)

where the first cosine factor describes the high-frequency
traveling wave, modulated by the propagating envelope given
by the second cosine factor. The condition that w, = w3 = Wyaye
leads to a complete cancellation of the two waves at the same
locations during the evolution as seen in the simulation. In
mode Fig3CO12 (V06), ¢,; is contributed by the phase
difference —0.087 (0.827) between the projection coefficients
a, and az as well as by the phase difference 0.147 (—0.727)
between 8p,»/p, and 6p,3/p,. Hence, ¢3~0.06m (0.17).
After being excited at the left boundary, the beat envelope first
goes to zero at the location where the argument of the second
cosine in Equation (A2) is 7/2. Using 1/k, = 0.00288 pc and
1/ks =0.00312 pc (1/k, = 0.015 pc and 1 /k; = 0.0145 pc), we
have x=0.12 pc (x~0.78 pc) for complete destructive
interference, in excellent agreement with the simulation shown
in the lower panels of Figure 2.
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