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ABSTRACT

Several observations of transition discs show lopsided dust distributions. A potential explana-
tion is the formation of a large-scale vortex acting as a dust-trap at the edge of a gap opened by
a giant planet. Numerical models of gap-edge vortices have so far employed locally isothermal
discs in which the temperature profile is held fixed, but the theory of this vortex-forming or
‘Rossby wave’ instability was originally developed for adiabatic discs. We generalize the study
of planetary gap stability to non-isothermal discs using customized numerical simulations of
disc—planet systems where the planet opens an unstable gap. We include in the energy equa-
tion a simple cooling function with cooling time-scale t. = 2, !, where € is the Keplerian
frequency, and examine the effect of B on the stability of gap edges and vortex lifetimes. We
find increasing 8 lowers the growth rate of non-axisymmetric perturbations, and the dominant
azimuthal wavenumber m decreases. We find a quasi-steady state consisting of one large-scale,
overdense vortex circulating the outer gap edge, typically lasting O(10°) orbits. We find vortex
lifetimes generally increase with the cooling time-scale 7. up to an optimal value of z, ~ 10
orbits, beyond which vortex lifetimes decrease. This non-monotonic dependence is qualita-
tively consistent with recent studies using strictly isothermal discs that vary the disc aspect
ratio. The lifetime and observability of gap-edge vortices in protoplanetary discs is therefore
dependent on disc thermodynamics.

Key words: accretion, accretion discs —hydrodynamics —instabilities — methods: numerical —

planet—disc interactions — protoplanetary discs.

1 INTRODUCTION

The interaction between planets and protoplanetary discs plays an
important role in the theory of planet formation and disc evolu-
tion. Disc—planet interaction may lead to the orbital migration of
protoplanets and modify the structure of protoplanetary discs (see
Baruteau & Masset 2013, for a recent review).

A sufficiently massive planet can open a gap in a gaseous proto-
planetary disc (Papaloizou & Lin 1984; Bryden et al. 1999; Crida,
Morbidelli & Masset 2006; Fung, Shi & Chiang 2014), while low-
mass planets may also open gaps if the disc viscosity is small
enough (Li et al. 2009; Dong, Rafikov & Stone 2011; Duffell &
MacFadyen 2013). Support for such disc—planet interaction have
begun to emerge in observations of circumstellar discs that reveal
annular gaps (e.g. Debes et al. 2013; Quanz et al. 2013b; Osorio
etal. 2014), with possible evidence of companions within them (e.g.
Quanz et al. 2013a; Reggiani et al. 2014).

A recent theoretical development in the study of planetary gaps
is their stability. When the disc viscosity is low and/or the planet
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mass is large, the presence of potential vorticity (PV, the ratio of
vorticity to surface density) extrema can render planetary gaps dy-
namically unstable due to what is now referred to as the ‘Rossby
wave instability’ (RWI; Lovelace et al. 1999; Li et al. 2000). This
eventually leads to vortex formation (Li et al. 2001, 2005; Koller,
Li & Lin 2003; de Val-Borro et al. 2007), which can significantly
affect orbital migration of the planet (Ou et al. 2007; Li et al. 2009;
Lin & Papaloizou 2010; Yu et al. 2010).

Vortex formation at gap edges may also have observable con-
sequences. Because disc vortices represent pressure maxima, they
are able to collect dust particles (Barge & Sommeria 1995; Inaba
& Barge 2006; Lyra & Lin 2013). Dust trapping at gap-edge vor-
tices have thus been suggested to explain asymmetric dust distribu-
tions observed in several transition discs (e.g. Casassus et al. 2013;
Fukagawa et al. 2013; Isella et al. 2013; van der Marel et al. 2013;
Pérez et al. 2014; Pinilla et al. 2015).

However, studies of Rossby vortices at planetary gap edges have
adopted locally isothermal discs, where the disc temperature is
a fixed function of position only (e.g. Lyra et al. 2009; Lin &
Papaloizou 2011; Fu et al. 2014; Zhu et al. 2014). On the other
hand, the theory of the RWI was in fact developed for adiabatic
discs (Li et al. 2000), which permits heating. In adiabatic discs, the
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relevant quantity for stability becomes a generalization of the PV
that accounts for entropy variations (Lovelace et al. 1999).

Gap opening is associated with planet-induced spiral shocks. In
an isothermal disc, PV-generation across these isothermal shocks
leads to the RWI (Koller et al. 2003; Li et al. 2005; de Val-Borro et al.
2007; Lin & Papaloizou 2010). However, if cooling is inefficient
and the shock is non-isothermal, then shock-heating may affect
gap stability, since the relevant quantity is an entropy-modified PV
(described below), and there is entropy generation across the shocks.

For example, previous linear simulations of the RWI found that
increasing the sound speed favours instability (Li et al. 2000; Lin
2013). In the context of planetary gaps, however, the increased
temperature may also act to stabilize the disc by making gap opening
more difficult. It is therefore of theoretical interest to clarify the
effect of heating and cooling on the stability of planetary gaps.

In this work, we extend the study of planetary gap stability against
vortex formation to non-isothermal discs. We include in the fluid
energy equation a one-parameter cooling prescription that allows
us to probe disc thermodynamics ranging from nearly isothermal to
nearly adiabatic.

This paper is organized as follows. In Section 2, we describe the
equations governing the disc—planet system and initial conditions.
Our numerical approach, including diagnostic measures, is given
in Section 3. We present results from two sets of numerical exper-
iments. In Section 4, we use disc—planet interaction to set up discs
with gaps, but study their stability without further influence from
the planet. We then perform long-term disc—planet simulations to
examine the lifetime of gap-edge vortices in Section 5, as a func-
tion of the imposed cooling rate. We conclude and summarize in
Section 6 with a discussion of important caveats.

2 DISC-PLANET MODELS

The system is a two-dimensional (2D) non-self-gravitating gas disc
orbiting a central star of mass M. We adopt cylindrical coordinates
(r, ¢, z) centred on the star. The frame is non-rotating. Computa-
tional units are such that G = M, =R = u = 1, where G is the
gravitational constant, R is the gas constant and p is the mean
molecular weight.

The disc evolution is governed by the standard fluid equations
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where X is the surface density, v = (v, vy) the fluid velocity, p is
the vertically integrated pressure, e = p/(y — 1) is the energy per
unit area and the adiabatic index y = 1.4 is assumed constant.

The total potential ® includes the stellar potential, planet po-
tential (described below) and indirect potentials to account for the
non-inertial reference frame. In the momentum equations, f, rep-
resent viscous forces, which includes artificial bulk viscosity to
handle shocks, and a Navier—Stokes viscosity whose magnitude is
characterized by a constant kinematic viscosity parameter v. How-
ever, we will be considering effectively inviscid discs by adopting
small values of v.
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2.1 Heating and cooling

In the energy equation, the heating term H is defined as
z

H=0" -0 =, “
%

where Q7 represents viscous heating (from both physical and ar-
tificial viscosity) and subscript i denotes evaluation at t = 0. The
cooling term C is defined as

1 )y
C=Z(€—€,‘E’.), (5)

wheret, = ,BQIZI is the cooling time, Qx = 1/ GM /r3 is the Keple-
rian frequency and 8 is an input parameter. This cooling prescription
allows one to explore the full range of thermodynamic response of
the disc in a systematic way: 8 < 1 is a locally isothermal disc
while 8 >> 1 is an adiabatic disc.

Note that the energy source terms have been chosen to be absent
at t = 0, allowing the disc to be initialized close to steady state.
The C function attempts to restore the initial energy density (and
therefore temperature) profile. In practice, this is a cooling term at
the gap edge because disc—planet interaction leads to heating.

2.2 Disc model and initial condition

The disc occupies r € [riy, Fou] and ¢ € [0, 27t]. The initial disc is
axisymmetric with surface density profile

sy =z () 1o [ 6
(= rel(a) [— r+Hi(rin):|’ (6)

where the power-law index s = 2, H(r) = cis,S2 defines the disc
scaleheight where c¢is, = +/p/ 2 is the isothermal sound-speed. The
disc aspect ratio is defined as # = H/r and initially 7 = 0.05. For a
non-self-gravitating disc, the surface density scale X is arbitrary.

The initial azimuthal velocity vy, is set by centrifugal balance
with pressure forces and stellar gravity. For a thin disc, vy >~ rQ.
The initial radial velocity is v, = 3v/r, where v = ﬁriﬁQk(rin), and
we adopt § = 107%, so that |v,/vy| < 1 and the initial flow is
effectively only in the azimuthal direction. With this value of phys-
ical viscosity, the only source of heating is through compression,
shock heating (via artificial viscosity) and the C function when
e / Y < e; / E,‘.

2.3 Planet potential

The planet potential is given by

M
@, = My ©)

)
/ 2 2
lr—rpl*+€;

where M, is the planet mass, and we fix ¢ = M,/M. = 1073
throughout this work. This corresponds to a Jupiter-mass planet
if M, = M. The planet’s position in the disc r, = (rp, ¢,) and
€y = 0.5r, is a softening length with r, = (¢/3)"/r, being the Hill
radius. The planet is held on a fixed circular orbit with r, = 10r;,
and ¢, = Qu(rp)t. This also defines the time unit Py = 27t/ Qi (rp)
used to describe results.

3 NUMERICAL EXPERIMENTS

The disc—planet system is evolved using the FARGO-ADSG code
(Baruteau & Masset 2008a,b). This is a modified version of the
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original FARGO code (Masset 2000) to include the energy equation.
The code employs a finite-difference scheme similar to the Fzeus
code (Stone & Norman 1992), but with a modified azimuthal trans-
port algorithm to circumvent the time-step restriction set by the fast
rotation speed at the inner disc boundary. The disc is divided into
(N,, Ny) zones in the radial and azimuthal directions, respectively.
The grid spacing is logarithmic in radius and uniform in azimuth.

3.1 Cooling prescription

In this work we only vary one control parameter: the cooling time.
The cooling parameter S is chosen indirectly through the parameter
B such that

te(rp + x5) = B (rp + X5) = Btin(rp + x4), ®)

where x; is the distance from the planet to its gap edge and ¢, is
the time interval between successive encounters of a fluid element
at the gap edge and the planet’s azimuth. That is, we measure the
cooling time in units of the time interval between encounters of a
fluid element at the gap edge and the planet-induced shock.

Assuming Keplerian orbital frequencies and x; < rp, gives #p =
4mtry /(3QpXs), Where Qi = Qi (7). Therefore,

~4mr, 3x
B=28 1- ) ©)]

3 2rp

where x; < r, was used again. We use x; = 2r;, in equation (9). For
a planet mass with ¢ = 1073, equation (9) then gives 8 ~ 23.98. In
terms of planetary orbital periods, this is

g /r\? RSL
tc(r):%(r—) P0:3.8ﬂ(—> P. (10)

P Tp

3.2 Diagnostic measures

3.2.1 Generalized PV
The generalized PV is defined as

K2

s X §72r, (11)

]7:

where k2 = r=39,(r*Q?) is the square of the epicyclic frequency,
Q = vy/r is the angular speed and S = p/X7 is the entropy. The
first factor is the usual PV (or vortensity).

The generalized PV appears in the description of the linear sta-
bility of radially structured adiabatic discs (Lovelace et al. 1999; Li
et al. 2000), where the authors show an extremum in #) may lead to a
dynamical instability, the RWI. In a barotropic disc where p = p(X),
the entropy factor is absent and the important quantity is the PV.

3.2.2 Fourier modes

The RWI is characterized by exponentially growing perturbations.
Though in this paper we do not consider a formal linear instability
calculation, modal analysis will be useful to analyse the growth
of perturbations with different azimuthal wavenumbers, which is
associated with the number of vortices initially formed by the RWI.
The Fourier transform of the time-dependent surface density is

27
Ya(r,t) = / S(r, ¢, 1) e dg (12)
0
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where m is the azimuthal wavenumber. We define the growth rate

o of the mth component of the surface density through

d(|Zl)r

— Y, =0 Zm rs 13
a (1Znl) 13)

where (| - |), denotes the average of the absolute value over a
radial region of interest. By using equation (13) the growth rates
of the unstable modes can be found from successive spatial Fourier
transforms over an appropriate period of time.

3.2.3 Rossby number

The Rossby number,

Rozﬁ-va—(ﬂva)q}’
2(Q)g

14

is a dimensionless measure of relative vorticity. Here ( - ), denotes
an azimuthal average. Values of Ro < 0 correspond to anticyclonic
rotation with respect to the background shear and thus can be used
to identify vortices and quantify its intensity.

4 GROWTH OF NON-AXISYMMETRIC MODES
WITHOUT THE INFLUENCE OF THE PLANET

In this section, the planet is introduced at t = 20P, and its potential
is switched on over 10P). At t = 30P, we switch off the planet
potential and azimuthally average the surface density, energy and
velocity fields. (At this point the planet has carved a partial gap
and the RWI has not yet occurred.) Effectively, we initialize the
disc with a gap profile. We then perturb the surface density in the
outer disc (r > r,) and continue to evolve the disc. We impose
sinusoidal perturbations with azimuthal wavenumbers m € [1, 10]
and random amplitudes within £0.01 times the local surface density.
This procedure allows us to analyse the growth of non-axisymmetric
modes associated with the gap, but without complications from
non-axisymmetry arising directly from disc—planet interaction (i.e.
planet-induced wakes).

Note that these ‘planet-oft” simulations are not linear stability cal-
culations because the cooling term in our energy equation restores
the initial temperature profile corresponding to constant H/r = 0.05,
rather than the heated gap edge. However, we will examine a nearly
adiabatic simulation in Section 4.3.1, which is closer to a proper
linear problem.

Simulations here employ a resolution of (N,, Ng) = (1024, 2048)
with open boundaries at r = ry, and ro, = 25r;,. We compare cases
with B = 0.1, 1, 10 corresponding to fast, moderately, and slowly
cooled discs.

4.1 Gap structure

We first compare the gap structures formed by planet—disc interac-
tion as a function of the cooling time. The azimuthally averaged gap
profiles are shown in Fig. 1 for different values of B. Gaps formed
with lower B (faster cooling) are deeper with steeper gradients at the
gap edges. Faster cooling rates also increase (decrease) the surface
density maxima (minima). However, a clean gap does not form in
this short time period.

Increasing B leads to higher disc aspect ratios 4 = H/r, i.e. higher
temperatures. Heating mostly occurs at the gap edges due to planet-
induced spiral shocks. Increasing the cooling time-scale implies that
this heat is retained in the disc. In the inviscid limit, the gap-opening
condition is r, 2> H or g > 3h* (Crida et al. 2006), which indicates

MNRAS 450, 1503-1513 (2015)
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Figure 1. Azimuthally averaged gap profiles at t = 30P¢ for the initial
partial gap opened before instability emerges for fast (solid, 8 = 0.1), mod-
erate (dashed, B = 1), and slow cooling (dashed-dot, B = 10). The relative
surface density perturbation (top), disc aspect ratio (middle) and generalized
vortensity perturbation (bottom) are shown.

that for hotter discs (higher /), it becomes more difficult for a planet
of fixed ¢ to open a gap. This explains the shallower gaps in surface
density when B is increased.

The important consequence of a heated gap edge is that the gen-
eralized vortensity profiles, 7j, becomes smoother with increasing
cooling times, with the extrema becoming less pronounced. Previ-
ous locally isothermal disc—planet simulations show the RWT asso-
ciated with PV minima (Li et al. 2005; Lin & Papaloizou 2010).
We can therefore expect the RWI to be associated with minima in

MNRAS 450, 1503-1513 (2015)

the generalized vortensity (corresponding to local surface density
maxima) in the non-isothermal case. Because the extrema are less
sharp, the RWI is expected to be weaker and the gap to be more
stable with longer cooling times.

However, we remark that the change in the gap structure becomes
less significant at long cooling times, as Fig. 1 shows that the profiles
with = 1 and B = 10 are similar. This implies that the effect of
cooling time-scale on the RWI through the set-up of the gap profile,
becomes less important for large B.

4.2 Axisymmetric stability

The initial planet—disc interaction form bumps and grooves in the
gap profiles which can potentially be unstable due to axisymmetric
instabilities. The generalized local axisymmetric stability condition
is the Solberg—Hoiland criterion,

N =0 (15)

where

1oP /10X 1 oP
N2_6<a a) (16)

T \z o yPor
is the square of the Brunt—Viisala frequency. At the outer gap
edge r = r, + 2.5r,, where the RWI is excited (see below), we
find x> + N? reaches local minimum with a value ~0.45 Qz(rp)
for all B. The Brunt—Viisili frequency at the outer gap edge is
N ~ 0.1 Q(rp), decreasing marginally with longer cooling rate. The
Solberg—Hoiland criterion is similarly satisfied for the entire 2D
disc throughout the simulations. Thus for all values of 3 the planet-
induced gaps are stable to axisymmertic perturbations.

4.3 Non-axisymmetric instability

We now examine the evolution of the gap for + > 30P,, with the
planet potential switched off, but with an added surface density per-
turbation. For all three cooling times B = 0.1, 1.0, 10, we observe
exponential growth of non-axisymmetric structures. An example is
shown in Fig. 2 for B = 10. We characterize these modes with an
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Figure 2. Evolution of azimuthal Fourier modes of disc surface density,
non- dimensionalized by the initial axisymmetric component (¢ = 0), for
the ‘planet-off” simulation with B = 10. Colours correspond to different m
values. The m = 3 component is the fastest growing mode during linear
growth with a growth rate of y = 0.017Q(rp).
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Table 1. Dominant mode and growth rates for B =
0.1, 1.0, 10.0 (fast, moderate and slow cooling) values
during ‘planet-off” simulations.

B=0.1 B=10 B =100
m  10%0/Qrp) m 10%0/Qrp) m 10%6/Qrp)
6 73 3 2.0 1 1.1
7 7.8 4 2.2 2 1.6
8 7.9 5 23 3 1.7
9 7.9 6 1.6 4 12
10 6.8 7 1.1 5 0.1

azimuthal wavenumber m and growth rate o (m) as defined by equa-
tions (12) and (13). Mode amplitudes were averaged over r — r, €
[2, 5]m,. Table 1 lists the growth rates measured during linear growth
for five values of m centred around that with maximum growth rate.

Table 1 show that as B is increased from 0.1 to 10 the domi-
nant azimuthal Fourier mode decreases from m = 9 to 3 and the
respective growth rate decreases from y /Q(rp) = 0.079 to 0.017.
However, despite two orders of magnitude increase in the cooling
time, the instability remains dynamical with characteristic growth
time < 10P,. Snapshots of the instability in for the different j are
shown in Fig. 3.

These ‘planet-off’ simulations show that gap edges become more
stable with longer cooling times. This is expected because larger
B results in hotter gap profiles at t = 30P, with less pronounced
generalized vortensity minima. Stabilization with increased cooling
time is therefore due to a smoother basic state for the instability, as
it is more difficult for the planet to open a gap if the disc is allowed
to heat up.

For completeness we also simulated a locally isothermal disc
with 2 = 0.05 where the sound speed is kept strictly equal to its
initial value. This simulation yield a most unstable growth rate
0 /R2(ry) = 0.05 at m = 5, compared with a value of 0.085 atm = 6
for a corresponding simulation that includes the energy equation
but with rapid cooling B = 0.01. However, the vortex evolution is
similar.

B=10, t=67P, B=10.0, t=75P,

1.49 0.697 0.389

0.528 0.246
0.5
0.762

0.358 0.103

e e
~ 0.0 0.387 0.188 70.04022\
S £

<
0.0326 0.0187 -0.183
-0.5
-0.332 -0.151 -0.326

-0.696 -0.321 -0.469

2.5 3.0 3.5

2.5 3.0 3.5
(r=re)/ri (r=re)/rn (r=re)/r

2.5 3.0 3.5

Figure 3. Generalized vortensity perturbation (relative to ¢ = 0) for cases of
fi = 0.1, 1, 10 (left, middle, right) during the growth of non-axisymmetric
modes. The planet potential has been switched off. The number of vortices
decrease as p increases. Note that snapshots are taken later for increasing
B because it takes longer for the vortices to grow and become visible with

increasing cooling time.
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4.3.1 Nearly adiabatic discs

The above-mentioned ‘planet-off” simulations are not formally lin-
ear stability calculations, because the cooling time is comparable
or shorter than the instability growth time, #. < y~!. Thus the disc
cools back to its initial temperature corresponding to # = 0.05 be-
fore or during the instability growth, so we do not have a steady
basic state to formulate a standard linear stability problem.

In order to capture the effect of a heated gap edge, we ran a sim-
ulation with B = 100, corresponding to an almost adiabatic disc. In
this simulation the cooling rate is slow enough that the gap temper-
ature profile (e.g. middle panel of Fig. 1) changes only marginally
over the instability growth time-scale.

We find very similar gap profiles and mode growth rates for
B =100 as with B = 10. At t = 30P,, the disc only heats up to
values & >~ 0.06 in the nearly adiabatic case. This is close to the
original temperature of & = 0.05, so linear growth rates are not
expected to change significantly (Li et al. 2000).

According to Li et al. (2000), increasing % increases linear growth
rates of the RWI because it is pressure driven. However, in the
case of disc—planet interaction, increasing & has a stabilizing effect
through the setting up the gap profile because it results in smoother
gap edges. The fact that we observe smaller growth rates as £ is
increased indicates that for planetary gaps, the importance of 4 on
the linear RWI is through setting up the gap profile, i.e. basic state
for the instability (as opposed to the linear response).

4.4 Long-term evolution

We also extended these ‘planet-off” simulations into the non-linear
regime. After the linear growth phase of the vortices, vortex merging
takes hold on time-scales of up to 150P,, until there is one vortex
left. We find the vortex merging time is dependent on the growth
rates of the modes and saturation time-scales, with the slowest
growing modes in B = 10 taking the longest to merge.

Fig. 4 shows evolution of the m = 1 surface density component,
which represents the amplitude of the post-merger single vortex.
For completeness we also ran intermediate cases with 8 = 0.5 and
5.0. The amplitude of the initially formed vortex was found to
decrease with increased cooling rate. The vortices simply decay on a

107" F
1072k 3
i 107 .
W F 1
WO74? ~0.1 3
E =0.5 ]
r =1.0 1
I =5.0 7
r =10.0 1
1070
0 500 1000 1500 2000
t/Po

Figure 4. Long-term simulations without the planet potential after the gap
is set up. The m = 1 surface density component, non-dimensionalized by
the initial m = 0 component, at the outer gap edge is shown as a function of
the cooling time-scale.
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1.000

T

0.100

2, /5,

0.010

oo e o
0 500 1000 1500 2000

t/Po
Figure 5. Evolution of the non-dimesnionalized m = 1 surface density
component for long-term simulations with the planet potential kept on.
Note there is vortex growth after the initial linear growth, which contrasts

to Fig. 4, where vortices decay in the absence of continuous disc—planet
interaction.

time-scale of O(10%) orbits with faster decay for stronger vortices
(which are obtained with faster cooling rates).

This decay is probably due to numerical viscosity. During the
slow decay the vortex elongates (weakens) while its radial width
remains O(H), so its surface density decreases. In addition, for
B = 0.1, 0.5and 1.0 we also observe the appearance of spiral waves
associated with the vortex, which may contribute to its dissipation
(see below). We will see in the next section that this decay after
linear growth is very different to when the planet potential is kept
on.

5 NON-LINEAR EVOLUTION OF GAP-EDGE
VORTICES WITH FINITE COOLING TIME

We now examine long-term simulations of gap-edge vortices for
B =0.1,0.5, 1, 5, 10. (Additional cases are presented in Section 5.4
when examining vortex lifetimes as a function of 3.) The planet po-
tential is kept on throughout. We employ a grid with (N,, Ny) = (512,
1024) in order for these simulations to be computationally feasible.
We also use a larger disc with ry, = 45r;, to minimize boundary ef-
fects on vortex evolution, and apply open boundaries at r = riy, Fou-

We comment that lower resolution simulations with (N,,
Ny) = (256, 512) show similar behaviour and trends as the high-
resolution runs reported below.

5.1 Generic evolution

The linear growth of the RWI and vortex formation is followed
by vortex merging. We now find merging time-scales independent
of [3, and by 60P, only one vortex remains. The evolution of the
amplitude of the m = 1 surface density component, averaged over
r—1, €[2, 10]r, is shown in Fig. 5 for different B The initial, post-
merger vortex amplitude is found to be weaker for longer cooling
rates (which have smaller linear growth rates).

In all cases the system remains in a quasi-steady state for >800P
with a single vortex circulating the outer gap edge at the local
Keplerian frequency. Fig. 6 shows a typical plot of the relative
surface density perturbation in this state. During this stage, the
vortex intensifies. This is better shown in Fig. 7 as the evolution
of Rossby numbers measured at the vortex centres. The Rossby

MNRAS 450, 1503-1513 (2015)

7.58
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4.72

3.29
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Figure 6. Relative surface density perturbation for the 3 = 0.1 case during
quasi-steady state with a single vortex at the outer gap edge. The plot for
other values of the cooling time B are similar. The decrease in the surface
density near r ~ 40r;, arises from mass-loss due to the open boundary
condition imposed at roy;.
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Figure 7. Evolution of Rossby numbers at the centres of the vortices formed
in discs with different cooling rates. A negative Rossby number implies
anticyclonic motion. Boxcar averaging was used to remove contributions
from the planet-induced spiral shock.

number increases in magnitude during quasi-steady state, but the
maximum |Ro is similar for all B: the vortex reaches a characteristic
value of Ro &~ —0.35 for B = 0.1 and Ro &~ —0.45 for B = 10.

We find the vortices become significantly overdense. Fig. 8 plots
the surface density perturbation measured at the vortex centres,
showing AX /%, > 7 for all cases of B in quasi-steady state, and
max(AX /%) ~ 11 for B = 5. The maximum overdensity typically
increases with longer cooling times, despite the vortices are initially
weaker at formation with increasing 8. The large increase in the sur-
face density is due to vortex growth as there is continuous generation
of vorticity by planet—disc interaction. This is supported by the ob-
servation that in the previous simulations without the planet, the
amplitude of the post-merger vortex does not grow (Fig. 4).

Fig. 5 shows that the duration of the quasi-steady state varies with
the cooling rate: for § = 0.1 and 10, the vortex amplitude begins
to decay around ¢ ~ 800Py, while for = 1, 5 the decay begins
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Figure 8. Average value of the relative surface density perturbation at

vortex centres for various cooling times. Initial vortex overdensities decrease
with cooling rate while vortex growth rates increase with cooling rate.

N i

att ~ 1200Py. This non-monotonic dependence suggests that there
exists an optimal cooling rate to maximize the vortex lifetime. We
will discuss this issue further in Section 5.4. Note the decay time-
scale can be long with rapid cooling: for B = 0.1 it takes ~400P,
whereas for B = 10 it takes ~100P, for the m = 1 amplitude to
decay significantly after reaching maximum.

5.2 Additional analysis on vortex decay

In this subsection, we examine the vortex decay observed in our
simulations in more detail. Fig. 9 show snapshots of the vortex for
the case B = 1. The plots show the surface density perturbation and
the surface density gradient during quasi-steady state (r = 700P),
when the m = 1 amplitude begins to decrease (r = 1300P;) and just
after the rapid amplitude decay (r = 1510P).

In quasi-steady (t = 700P,) the vortex is elongated with a vortex
aspect ratio ~4, but becomes more compact approaching a ratio of
2 during its decay (1 = 1310Py). Note in Fig. 9 the appearance of

B=1.0, t=700P, B=1.0, t=1300P, B=1.0, t=1510P,
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Figure 9. The vortex in the case with B = 1 during quasi-steady state
(left), start of decay (middle) and just after the decay in the m = 1 amplitude
(right). The surface density perturbation (top) and the associated surface
density gradient (bottom) are shown. Wake-like features corresponding to
large density gradients are found to originate from the vortices during the
late phase of their quasi-steady states and into dissipation times. This plot
is to be considered in conjunction with Fig. 5.
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wakes extending from either side of the vortex at = 1300P,. These
wakes correlate with large gradients in surface density (bottom
panel), and are first seen in the latter half of the quasi-steady state.
We find the time at which the vortex begins to decay coincides with
the emergence of these wakes.

During the quasi-steady state the vortex orbits at r ~ r, + 6ry,. We
do not see significant vortex migration at this stage, since the vortex
is located at a surface density maximum (Paardekooper, Lesur &
Papaloizou 2010). However, simultaneous with the appearance of
the wakes, we observe the vortex begins to migrate inwards to
r~ry =+ 5.

During quasi-steady state the average value of the surface den-
sity gradient along the wakes is |[w, VX /X| ~ 0.4, where ws >~ 0.1
(code units) is a typical length-scale of the surface density variation
across the wake. Just before the m = 1 amplitude begins to de-
crease, we observe that this quantity sharply increases to ~0.6, and
remains around this value until the vortex dies out, at which point
the associated Rossby number begins decreasing to zero. After the
vortex reaches small amplitudes (1 < AX/X), it migrates out to
r~ry+6.5n.

We also measured large increases in the Mach number near the
vortex as the m = 1 surface density amplitude reaches maximum and
begins to decay. Fig. 10 plots the Mach number M = |v — vy /cs,
where v, corresponds to the bulk velocity of the vortex around
the disc. Values in Fig. 10 have been averaged over a region within
2H of the vortex centre. During the quasi-steady state the Mach
number increases steadily, and for all cases M maximizes about
~100Py after the m = 1 surface density amplitude starts to decay.

Putting the above-mentioned observations together, we suggest
that vortex decay (in the m = 1 surface density amplitude) is due
to shock formation by the vortex. When the vortex reaches large
amplitude, it begins to induce shocks in the surrounding fluid, as
supported by the increase in Mach number and the appearance
of wakes with large surface density gradients. The vortex may
lose energy through shock dissipation. In addition, a strong vortex
(or shock formation) can smooth out the gap structure that origi-
nally gave rise to the RWI, which would oppose vortex growth. We
examine this below.

1.6

T

1.4

ou—oe
Coown=|-

o

oporrr| |

1.2

0.8

0.6

v ]

T

040 . ... R

0 500 1000
t/Po

Figure 10. Mach number relative to the vortex, averaged over a region

within 2H of the vortex centre with respect to time. This plot can be compared

to the evolution of the vortex amplitude shown in Fig. 5.
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Figure 11. Azimuthally averaged profiles of the relative surface density
perturbations for B = 1.0 before (solid) and after vortex decay (dashed).
Alongside drastic reduction in the outer gap maxima, vortex decay smooth
out the sharp outer gap edge.

5.3 Vortex decay and gap structure

We find vortex decay modifies the gap structure. Fig. 11 shows
the gap profile before and after vortex decay for the case 8 = 1.
The vortex resides around the local surface density maximum at the
outer gap edge (r ~ r, + 6ry,). We see that after its amplitude has
decayed (¢ ~ 1500Py, Fig. 5), this local surface density maximum
is also smoothed out.

We characterize the smoothness of the outer gap edge with a
dimensionless gap edge gradient parameter

an

Az ) d
Sm_< or ’<2(r=0,r>>¢>A’

where Ar = r € [r,, 1, + 6ry] is the radial range of averaging,
spanning from centre of the gap to the radius of the surface density
maximum. A larger § ¥ characterizes a sharper gap edge and larger
local surface density maxima.

A plot of the gradient parameter over time for the g = 1.0 case
is shown in Fig. 12. During vortex decay, the outer gap edge is
drastically smoothed out, changing from a value of § ¥ = 1.2 during
quasi-steady state to 0.4 after dissipation.

This can be interpreted as the vortex providing a viscosity; and
we measure a typical alpha viscosity @ = O(1072) associated with
the vortex. This acts against gap opening by the planet, and smooths
out the outer surface density bump, so the condition for the RWI
becomes less favourable. In order to re-launch the RWI, the surface
density bump should reform. However, this is difficult as there is
no more material in the planet’s vicinity to clear out (Fig. 11) to
form a surface density bump outside the gap. This may explain
why vortices do not reform again (at least within the simulation
time-scale). After full decay the aspect ratio at the outer gap edge
is h ~ 0.05.

5.4 Vortex lifetimes as a function of cooling rate
We now examine vortex lifetimes as function of the imposed

cooling times. For this study, additional simulations with B =
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Figure 12. Non-dimensional measure of the surface density gradient at the
outer gap edge B = 1.0. During the vortex quasi-steady state the gap edge
is found to have a large gradient and sharp peak while vortex dissipation,
which occurs at # &~ 10°Py as seen in Fig. 5, works to smooth out the gap
edge.
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Figure 13. Characteristic time-scales associated with vortex evolution, as a
function of the cooling parameter B: time in which the 7 = 1 surface density
amplitude begins to decay, #4iss (black); time at which the overdensity at the
vortex centre decreases to AX /X ~ 1 after reaching maximum, #jfe (red);
and fpach 18 the time taken for the average Mach number around the vortex
to maximize (blue).

0.01, 0.25, 0.75, 2.5, 7.5 were also performed. We define the vor-
tex lifetime, #;g, as the time at which the overdensity of the vortex
returns to AX /¥, ~ 1 after reaching maximum (which is of the
order of the initial overdensity associated with the gap formation).

We plot ;5. with respect to cooling times in Fig. 13. We also plot
t4iss: the time elapsed before the vortex to begins to dissipate (when
the m = 1 surface density amplitude begins to decay); and fyach:
the time taken for the average Mach number around the vortex to
maximize.

For fast cooling rates (8 < 1), the vortex lifetime is maximized
for B — 0: we find f;;. ~ 2100P, for B = 0.01 and decreases
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to tife ~ 950P, for B = 0.25. Note that for very small B, there
is significant contribution to the overall vortex lifetime due to a
long decay time-scale. For longer cooling times (8 > 1) the vortex
lifetimes maximizes at B = 2.5 with #;;. & 1650P,.

We comment here that a locally isothermal simulation, where
the disc sound-speed is kept constant in time, was also performed
for comparison. In this case we did not observe significant vortex
decay within the simulation time-scale (implying 745 = 2000P).
We expect the corresponding vortex lifetime to exceed that for
B = 0.01. Including an energy equation with rapid cooling (or set-
ting y close to unity) could still lead to discrepancies with a locally
isothermal disc. This is due to the advection-creation of specific
entropy within the planet’s horseshoe region with the former case,
thereby affecting the generalized vortensity and therefore the insta-
bility (Section 4.3) and subsequent vortex evolution. Nevertheless,
alonger vortex lifetime in a locally isothermal disc would be consis-
tent with the above-mentioned trend of increasing vortex lifetimes
as p — 0.

In the previous section, we observed that vortices began to decay
when it starts to induce shocks. We thus suggest that the time needed
for the vortex to grow to sufficient amplitude to induce shocks in the
surrounding fluid, which may be considered as the duration of the
quasi-steady state or 4, 1S an important contribution to the overall
vortex lifetime. We discuss below some competing factors that may
result in a non-monotonic dependence of 745, on the cooling rate.

5.4.1 Factors that lengthen vortex lifetimes

It has been shown that the amplitude at which the RWI saturates
increases with the growth rate of the linear instability (Meheut,
Lovelace & Lai 2013). Our ‘planet-off’ simulations yield slower
growth rates with increasing cooling times, which suggest weaker
vortices are formed initially with increasing 8. This is consistent
with the present simulations: at the beginning of the quasi-steady
state (¢ ~ 100Py) we find the overdensity at the vortex centre is
AY/Sy=25for B =0.1and AX/Z, = 1.48 for B = 10.

The growth of the post-merger single vortex is mediated by disc—
planet interaction. However, gap opening becomes more difficult
in a hotter disc, and we find the generalized vortensity profiles are
smoother with increasing B. This opposes the RWI. Furthermore,
the vortex should reach larger amplitudes to induce shocks on ac-
count of the increased sound speed.

These considerations suggest, with increased cooling times, it
takes longer for the post-merger vortex grow to sufficient amplitude
to induce shocks and dissipate. This factor contributes to a longer
quasi-steady state with increasing B.

5.4.2 Factors that shorten vortex lifetimes

Note in Figs 5 and 8, the vortex growth during the quasi-steady
state is actually faster for B = 10 than for B = 5. For example, at
t ~ 500P, the vortex with B = 10 has a larger amplitude than for
B = 5. This is also reflected in Fig. 10, where the Mach number
reaches its maximum value sooner for 8 = 10 than for g = 5.
This observation is consistent with the RWI being favoured by
higher temperatures (Li et al. 2000; Lin 2012) through the per-
turbations (as opposed to its effect through the set-up of the gap
profile discussed previously), which corresponds to longer cooling
times in our case. While our ‘planet-oft’ simulations indicate this
is unimportant for the linear instability, it may have contributed
significantly to the vortex growth during quasi-steady state at very
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long cooling times (e.g. B = 10). This effect shortens the vortex
lifetime by allowing it to grow faster and induce shocks sooner.

6 SUMMARY AND DISCUSSION

In this paper, we have carried out numerical simulations of non-
isothermal disc—planet interaction. Our simulations were cus-
tomized to examine the effect of a finite cooling time on the stability
of gaps opened by giant planets to the so-called vortex instability or
RWI. To do so, we included an energy equation with a cooling term
that restores the disc temperature to its initial profile on a character-
istic time-scale 7.. We studied the evolution of the gap stability as a
function of 7. This is a natural extension to previous studies of on
gap stability, which employ locally or strictly isothermal equations
of state. We considered the inviscid limit which favours the RWI
(Li et al. 2009; Fu et al. 2014) and avoids complications from vis-
cous heating other that shock heating. However, this means that the
vortex lifetimes observed in our simulations are likely longer than
in realistic discs with non-zero physical viscosity.

We considered two types of numerical experiments. We first used
disc—planet interaction to self-consistently set up gap profiles, which
were then perturbed and evolved without further the influence of
the planet potential. This procedure isolates the effect of cooling
on gap stability through the set-up of the initial gap profile. We
find that as the cooling time ¢, is increased, the gaps became more
stable, with lower growth rates of non-axisymmetric modes and the
dominant azimuthal wavenumber also decreases. This is consistent
with the notion that increasing f. leads to higher temperatures or
equivalently the disc aspect ratio i, which opposes gap opening by
the planet. This means that the gaps opened by the planet in a disc
with longer ¢, are smoother and therefore more stable to the RWI.

In the second set of calculations, we included the planet potential
throughout the simulations and examined the long-term evolution
of the gap-edge vortex that develops from the RWI. The vortex
reaches a quasi-steady state lasting O(10%) orbits. Unlike the ‘planet-
off’ simulations, in which vortices decay after linear growth and
merging, we find that with the planet potential kept on, the vortex
amplitude grows during this quasi-steady state, during which no
vortex migration is observed, until it begins to induce shocks, after
which the vortex amplitude begins to decay.

For our main simulations with dimensionless cooling times 3 >
0.1, the duration of the quasi-steady state increases with increasing
cooling time-scales until a critical value, beyond which this quasi-
steady state shortens again. We find the time-scale for the vortex
to decay after reaching maximum amplitude can be long for small
B, which contributes to a long overall vortex lifetime with rapid
cooling. We do observe vortex migration during its decay, which
may influence this decay time-scale.

We suggest a non-monotonic dependence of the quasi-steady
state on the cooling time-scale B can be attributed to the time
required for the vortex to grow to sufficient amplitude to induce
shocks in the surrounding fluid, thereby losing energy and also
smooth out the gap edge.

For short cooling time-scales, the planet is able to open a deeper
gap which favours the RWI, leading to stronger vortices. For long
cooling time-scales, we find the vortex grows faster during the quasi-
steady state. In accordance with previous stability calculations (Li
et al. 2000), we suggest the latter is due to the RWI being favoured
with increasing disc temperature, and that this effect overcomes
weaker gap opening for sufficiently long cooling times. These com-
peting factors imply for both short and long cooling time-scales, the
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vortex reaches its maximum amplitude, shock and begins to decay,
sooner than intermediate cooling time-scales.

(However, for very rapid cooling, e.g. B = 0.01, the quasi-steady
state is also quite long. This suggests that the above-mentioned ef-
fects themselves do not have a simple dependence on the cooling
time-scale when considering 8 — 0 and/or that other factors be-
come important in this limit. This should be investigated in future
works.)

We remark that a non-monotonic dependence of the vortex life-
time was also reported by Fu et al. (2014), who performed lo-
cally isothermal disc—planet simulations with different values of
the disc aspect ratio. In their simulations, the optimum aspect ratio
is & = 0.06. In our simulations, % is a dynamical variable, but by
analysing the region where the vortex is located (r — r,, € [2, 10]ry),
we find for a dimensionless cooing time-scale of B = 2.5, which
has the longest vortex lifetime in the presence of moderate cooling,
that & =~ 0.058 on average. Our result is thus consistent with Fu
et al. (2014).

6.1 Caveats and outlooks

There are several outstanding issues that needs to be addressed in
future work.

Convergence. Although lower resolution simulations performed
in the early stages of this project gave similar results (most impor-
tantly, the non-monotonic dependence of vortex lifetimes on the
cooling time-scale), we did find the lower resolution typically yield
longer vortex lifetimes than that reported in this paper. This could
be due to weaker RWI with low resolution. It will be necessary
to perform even higher resolution simulations in order to obtain
quantitatively converged vortex lifetimes.

Orbital migration. We have held the planet fixed on a circular
orbit. However, gap-edge vortices are known to exert significant,
oscillatory torques on the planet (Li et al. 2009) which can lead to
complex orbital migration. This will likely affect vortex lifetimes
as it may alter the planet—vortex separation, as well as leading to
direct vortex—planet interactions (Lin & Papaloizou 2010; Ataiee
et al. 2014). Thus, future simulations should allow the planet to
freely migrate. Similarly, the role of vortex migration on its lifetime
should be clarified.

Cooling model. Our prescription for the disc heating/cooling is
convenient to probe the full range of thermodynamic response of
the disc. However, in order to calculate vortex lifetimes in actual
protoplanetary discs, an improved thermodynamics treatment, e.g.
radiative cooling based on realistic disc temperature, density, opac-
ity models, etc., should be used in future work.

Self-gravity. We have ignored disc self-gravity in this study. Based
on linear calculations, Lovelace & Hohlfeld (2013) concluded self-
gravity to be important for the RWI when the Toomre parameter
0 < O(1/h), or Q < 20 for h ~ 0.05, as was typically considered in
this work. This suggests that self-gravity may affect vortex lifetimes
even when Q is not small. In particular, given that we observe
vortices can reach significant overdensities (up to almost an order
of magnitude), it will be important to include disc self-gravity in
the future.

Three-dimensional (3D) effects. A vortex in a 3D disc may be sub-
jectto secondary instabilities that destroy them (Lesur & Papaloizou
2009; Railton & Papaloizou 2014). This may be an important fac-
tor in determining gap-edge vortex lifetimes in realistic discs. For
example, if these secondary instabilities sets in before the vortex
grows to sufficient amplitude to shock, then the dependence of the
vortex lifetime on the cooling time-scale will be its effect through

MNRAS 450, 1503-1513 (2015)

the 3D instability (as opposed to the effect on the RWTI itself, which
is a 2D instability). This problem needs to be clarified with full 3D
disc—planet simulations.
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